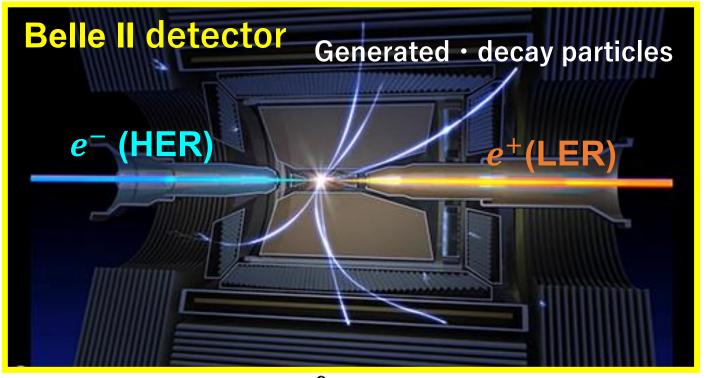
Machine Learning-Assisted Beam Operation at SuperKEKB and Linac at KEK

Shinnosuke Kato (The University of Tokyo, KEK)

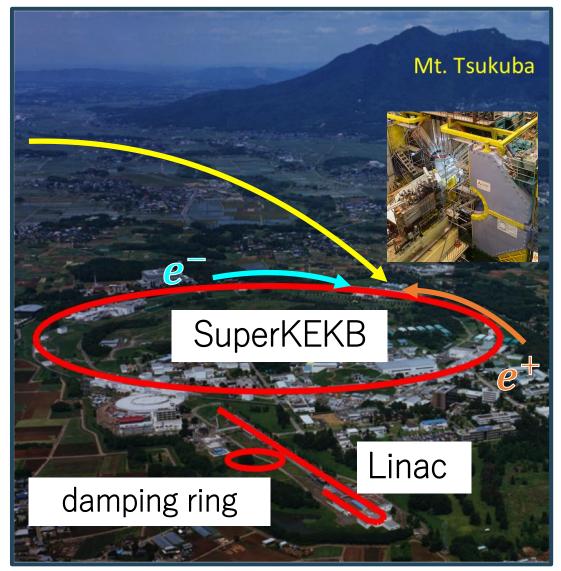
Gaku Mitsuka , Naoko Iida, Takuya Natsui , Masanori Satoh (KEK Acc.)

Luminosity is important for a new physics



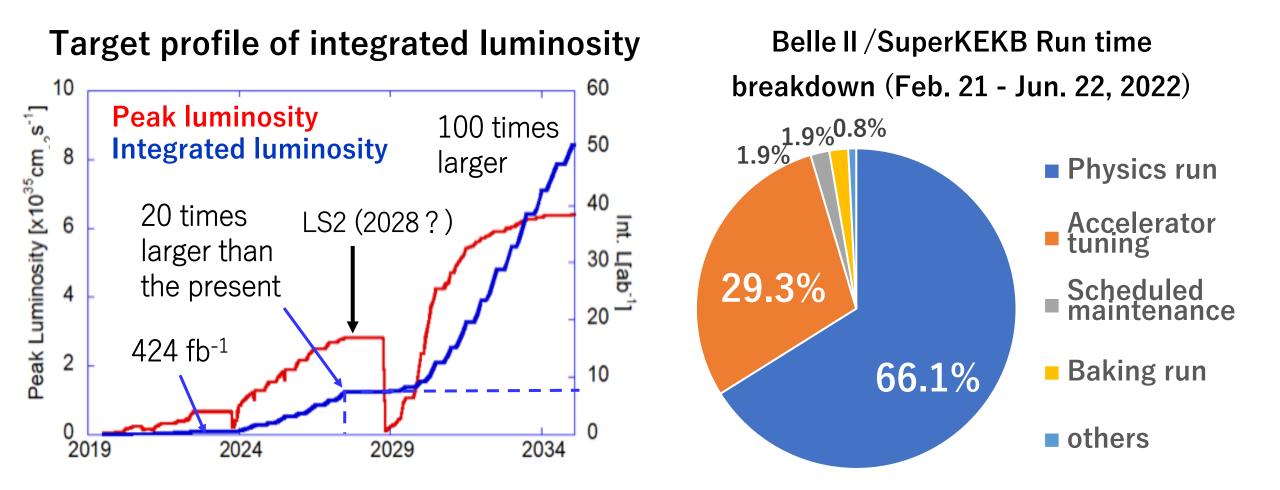
$$N = \sigma \left[\mathrm{cm}^2 \right] \int \left[L \left[\mathrm{cm}^{-2} \mathrm{s}^{-1} \right] dt \left[s \right] \right]$$

Accumulating statistics N to search for a new physics →Requires high peak luminosity and long-term stability



2023/09/14

Motivation to introduce machine learning



We want to make accelerator tuning efficient using machine learning

Linac study for SuperKEKB injection tuning

For machine learning.....

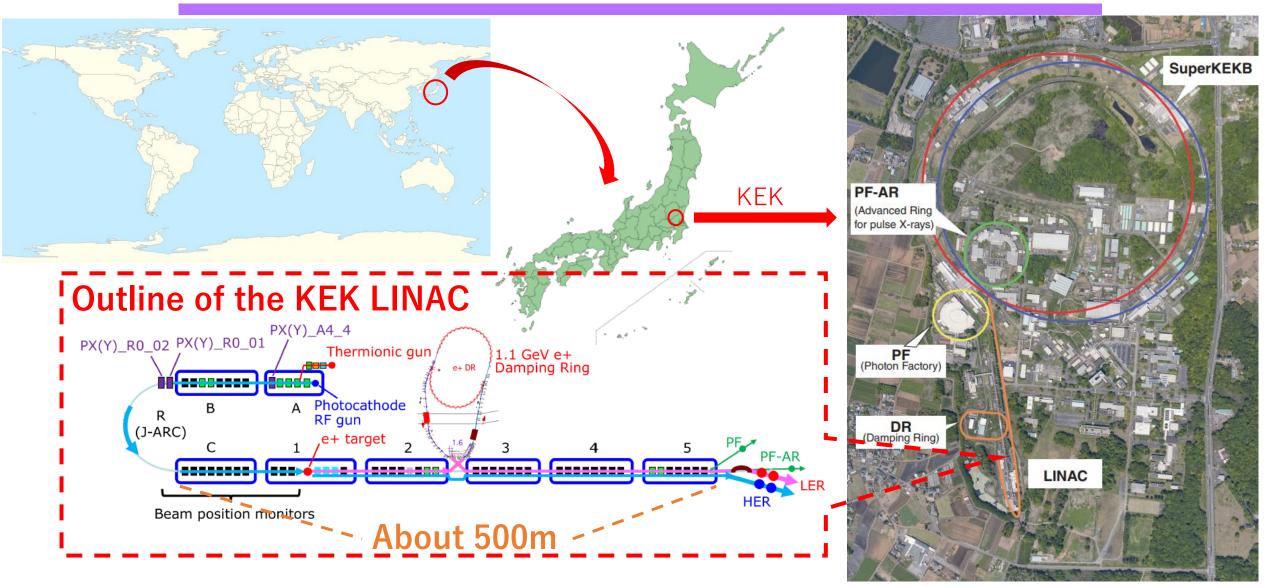
- How efficiently and quickly can we optimize the beam?
- What characteristics does the optimization have?
- Which parameters are important to optimize ?

Outline

Introduction

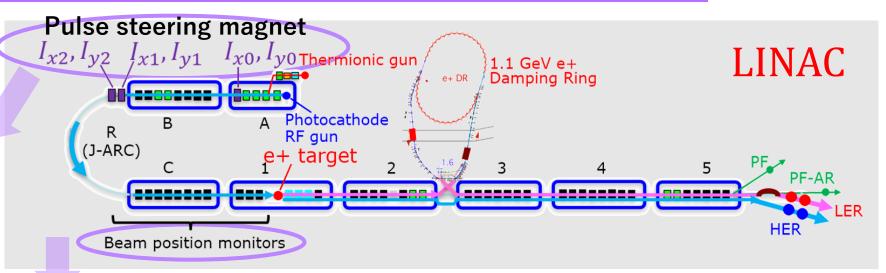
- Experiment setup of this study
- How to optimize the machine parameters at the KEK LINAC
- Two types of optimization algorithms
- Results of optimization (beam charge maximizing)
 - *e*⁻ beam
 - e^+ beam
- Summary and prospects

Introduction to the KEK LINAC



Components used in this study

Pulse magnets ready for installation (taken in 2017)



Ordinary BPM used in the KEK LINAC

BPM signal processing system

1% uncertainty

2023/09/14

IBICZOZ3 Shinnosuke Kato

Experiment setup of this study

 I_{x0}, I_{y0} Thermionic gun

1.1 GeV

e+ DR

Damping Ring

 $I_{x2}, I_{y2}, I_{x1}, I_{y1}$

Tuning parameters Applied currents to 6 steering magnets: $I_{x0}, I_{y0}, I_{x1}, I_{y1}, I_{x2}, I_{y2}$ (A)

Evaluation parameter Beam charge of 14 BPMs' average: Q (nC)

Machine learning

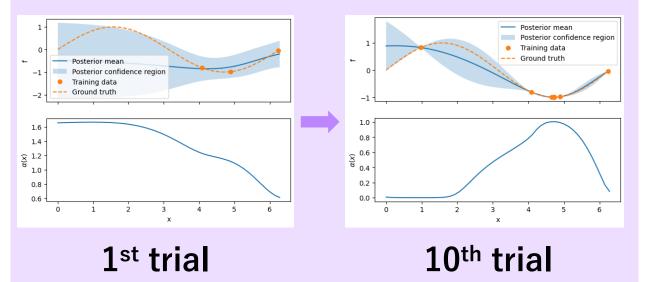
Photocathode R (J-ARC) RF aun target Beam position monitors Loop again ! Get beam **Put current** charge of magnets Accumulate data **Estimate best Optimization** Trial1 $I_{x0} \sim I_{y2} \leftrightarrow Q$ current at that time Trial2 $I'_{x0} \sim I'_{\nu 2} \leftrightarrow Q'$ algorism to maximize charge (next page in detail)

LINAC

Two types of algorithm to optimize

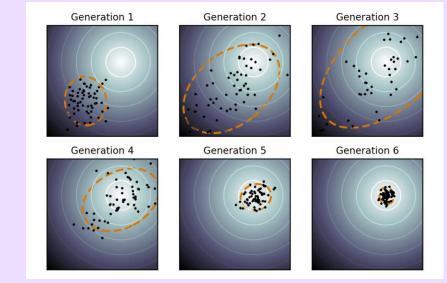
(a) Bayesian optimization (BoTorch)

Optimize black-box functions using Gaussian process. Below figure is looking for the minimum.



(b)CMA-ES

One of evolutionary computation algorithms.



https://en.wikipedia.org/wiki/CMA-ES#/media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png

Conventional

Recently proposed

We tested the both algorithms in this study.

IBIC2023 Shinnosuke Kato

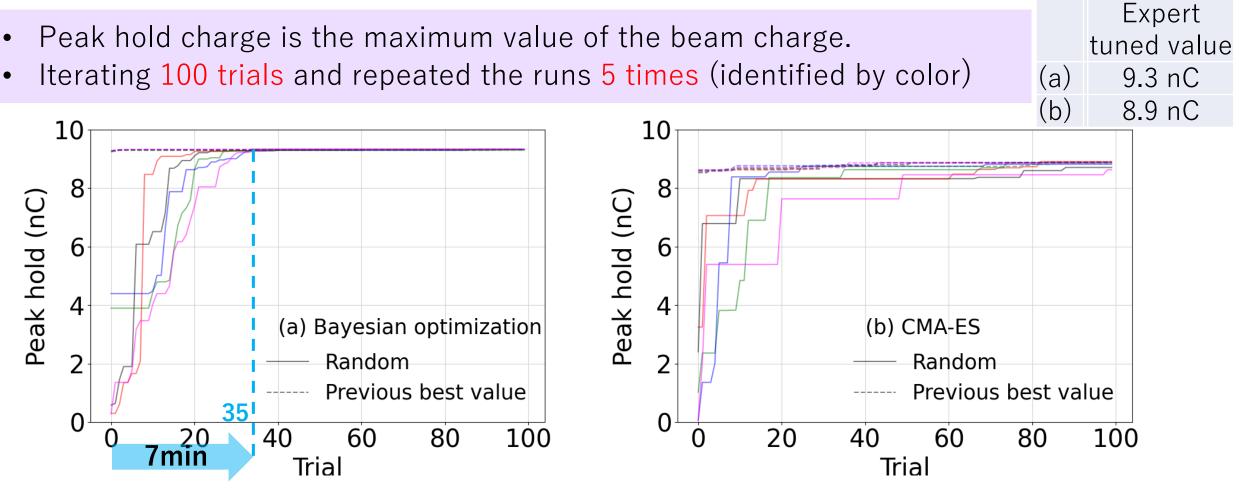
Detail of optimization for *e*⁻ beam

	Date	Expert tuned value
(a)Bayesian	June 2 nd 11 am to 3 pm	9.3 nC
(b)CMA-ES	June 12 th 11 am to 2 pm	8.9 nC

"Random" = First 10 trials are randomly initialized.

"Previous best value" = First 10 trials initialized using the top 10 results giving the best beam charge taken from the last run

To what level and how quickly can algorithms optimize ?



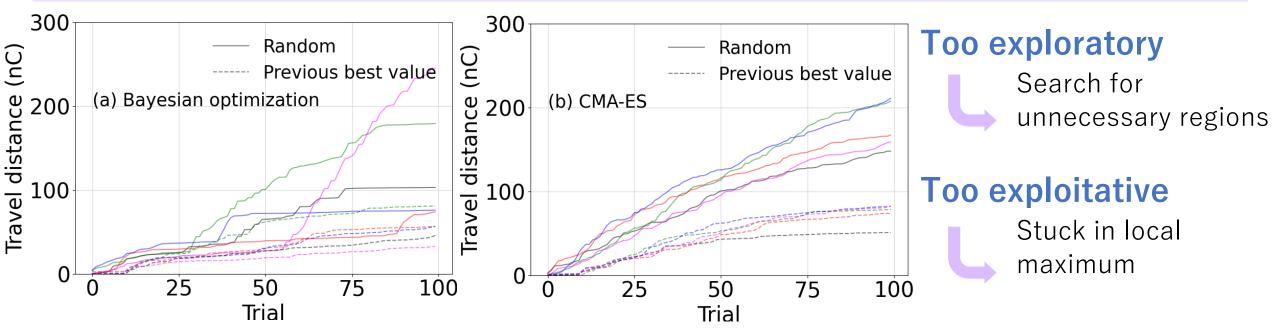
Both algorithms were able to optimize even "Random" ! In Bayes opt., all runs are maximized in about 35 trials (7 minutes) !

What characteristics do they have?

Travel distance is formulated as $Q_{td} = \sum |q(t) - q(t-1)|$

 Q_{td} represents how exploitative or exploratory per trials.

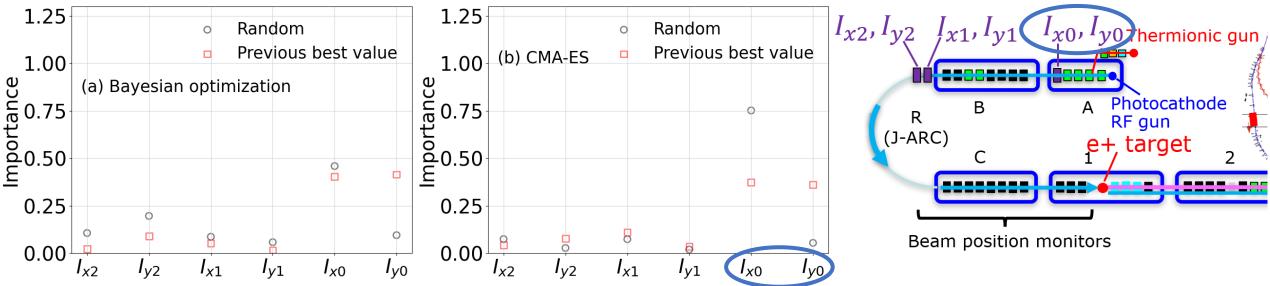
steep slope \rightarrow exploratory shallow slope \rightarrow exploitative



In "Random", characteristics of Bayes opt. are influenced by the initial values. In "Previous best value", no big difference between Bayes opt. and CMA-ES.

Which parameters are important to optimize ?

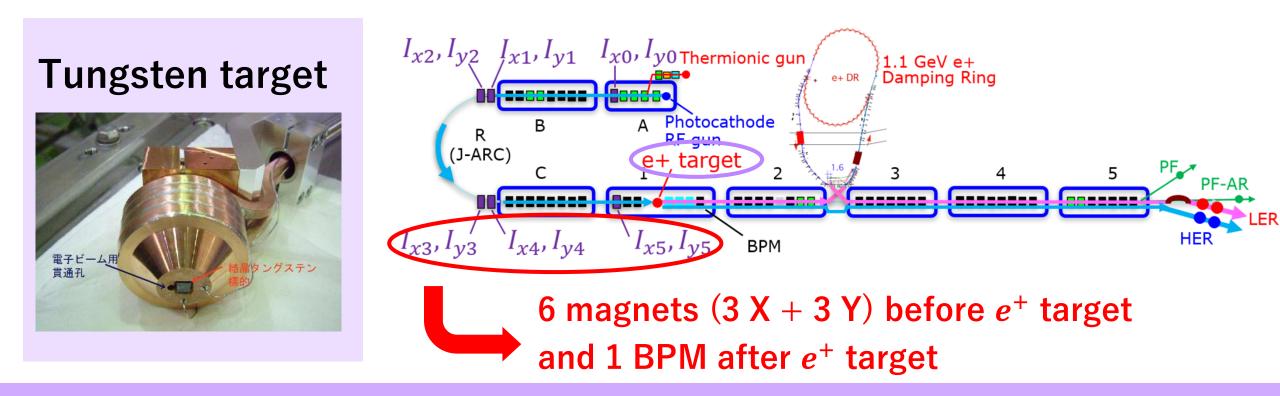
- "Importance" describes which parameters give the significant change in charge.
- It can be quantified using the fANOVA method. [Hutter, ICML 2014]
- Importance sum is normalized to 1. (Σ (Importance) = 1)



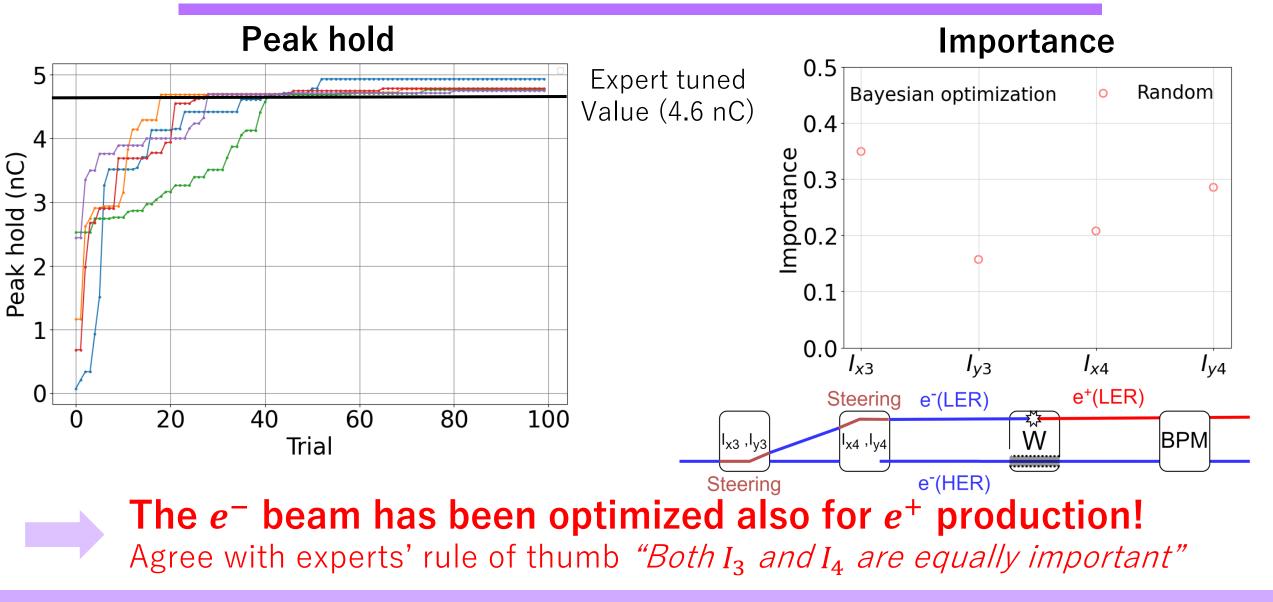
 I_{x0}, I_{y0} (most upstream magnets) have higher importance in the both. Agree with experts' rule of thumb *"Sequentially tuned from upstream"* Horizontal collimator in the R-sector \rightarrow High importance of I_{x0}

Detail of optimization for e⁺ beam

- Maximize the positron beam charge by adjusting the steering magnets close to the tungsten target (only "Random")
- Optimize total 6 parameters using the Bayesian optimization
- Iterate 100 trials and repeat the runs 5 times



Result of optimization for e⁺ beam



Summary and prospects

- Using the Linac electron beam, we studied the possibility of using machine learning to adjust the SuperKEKB beam.
- Bayesian optimization achieved the maximum charge in 7 minutes, while experts took 30 minutes.
 We also clarified the characteristics and important parameters.
- Optimization worked in the two different tests, so it would work for SuperKEKB beam-injection tuning.
- In this December after restarting operation, we will apply ML-assisted methods to SuperKEKB.