

The development of a 128-channel ultra-low noise transimpedance amplifier system

Tian Wang, Zhixue Li, Kewei Gu, Tong Liu, Junxia Wu

Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China University of Chinese Academy of Sciences, Beijing, China Email: wangtian@impcas.ac.cn

CONTENTS

- 1. Background and Significance
- 2. System Structure
- 3. Analog Front-end Electronics
- 4. Digital Signal Processing
- 5. Electrical Performances
- 6. Beam Tests with MSIC
- 7. Conclusion

Background and Significance

Proton Radiation Effects Facility

PREF's terminal

MSIC: Multi-strip Ionization Chamber

Parameter	Value	readout s	y
Number of channels	128 (16×8)		
Measurement range	25 pA ~ 1.8 μA		3
Analog bandwidth	1 kHz		Q
Sampling frequency	60 MHz		24

System Structure

Data acquisition board and AFE

Data processing board

System Structure

Diagram of this multi-channel readout system

Analog Front-end Electronics

Block diagram and the PCB board diagram of the AFE

7

Firmware of the Kintex-7 FPGA

Schematic of the Zynq FPGA firmware and the PCB board diagram.

ARM Embedded Design

ARM

Control

2208 (1.8 Hz)

Time (s)

Array Data ksps Data parsing average transmission Normalized with 10 ksps current Profile 7217 (2.8 Hz) interrupt Offset splicing mode reduction Gaussian 10 ksps fitting SD card 3983 (3.1 Hz) Uniformity (bc) Offset file Data file *K* factor file a calculate 60 110 Channels

Schematic of the ARM embedded design and the graphical user interface.

CS - Studio

Off-line test platform

11

Baseline Calibration Test

• Mean offset :

-14.34 nA to 0.05 nA

• FWHM:

10.01 nA to 0.75 nA.

The 128 channels' DC-offsets before and after the offset calibration.

Gain	Bin width	SINAD	SFDR	ENOB
500 kΩ	0.1 Hz	74.10 dB	87.07 dB	12.0 bits
5 ΜΩ	0.1 Hz	65.57 dB	79.55 dB	10.9 bits
50 MΩ	0.1 Hz	61.40 dB	73.81 dB	9.9 bits

Noise spectral density of the readout electronics.

Amplitude Linearity Test

Gain	Min amplitude	Max amplitude	Step	Nonlinearity
500 kΩ	0.1 μΑ	1.5 μA	0.1 μΑ	< 0.09 %
5 ΜΩ	10 nA	150 nA	10 nA	< 0.11 %
50 MΩ	1 nA	15 nA	1 nA	< 0.12 %

Output amplitude linearity of the readout electronics.

Channel Consistency Test

Mean : 7.36 σ : 0.04

Mean : 66.98 σ: 0.36

It is Compensable!

Statistical distribution of the K value in different gains.

Beam Test with MSIC in HIRFL-CSR

Beam profiles of the slow extraction in HIRFL-CSR.

Beam Test in PREF - 60MeV proton beam

Scanning area:100 * 100 mm²

Scanning area:50 * 50 mm²

Scanning area:200 * 200 mm²

Beam current 32.3 pA

Beam current 9.3 pA

Beam Test in PREF – weak beams

60MeV proton beam

Beam current : 0.14 pA

10MeV proton beam

Beam current : 0.11 pA

Beam profiles of the slow extraction in PREF.

Conclusion

- 1. A 128-channel readout system with 60 Msps.
- A new I-V converter with a high dynamic of 25
 pA–1.8 μA.
- 3. An adaptive decoding module to decode the 480Mbps serial data.
- 4. An automatic calibration device.
- 5. Extend to other fast profile monitors.

Thank you for your attention!