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§ The Advanced Photon Source Upgrade (APS-U) project at the Argonne National Laboratory will replace the 
existing 7-GeV, double bend storage ring lattice with a new 6-GeV hybrid 7 bend achromat lattice.

§ Coupled bunch mode 0 (CBM0) oscillations where energy oscillations of all bunches are in-phase with each 
other, induce horizontal orbit motion at synchrotron frequency. 

§ The Fast orbit feedback (FOFB) bandwidth in APS-U will be DC-1000 Hz while the synchrotron frequency 
will lie anywhere between 100 and 560 Hz. 
– This frequency overlap places CBM0 induced horizontal position offsets within the orbit feedback 

bandwidth range, potentially affecting our ability to achieve APS-U goals for beam stability. 

§ Large storage-rings such as APS (1.1-km circumference) would need longitudinal feedback system with high 
kick voltage capability for CBM0 suppression. 
– APS-U longitudinal feedback kicker is not strong enough to damp CBM0 oscillations.

Motivation
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§ New orbit to RF phase feedback configuration to suppress CBM0 oscillations,
– Beam position measurements at dispersive bpms are dynamic inputs 
– Low level RF (LLRF) phase is used as actuator
– Orbit feedback controller generates RF phase setpoint using energy induced component extracted from 

measured orbit. 

§ Proof of concept experiments using 7 GeV operations lattice1
– Synchrotron frequency is outside the orbit feedback bandwidth
– Demonstrated orbit feedback operation together with CBM0 correction in experiments and simulations

§ Experimental study with 6 GeV low-alpha lattice configuration
– Synchrotron frequency is inside the orbit feedback bandwidth resembling  APS-U
– Demonstrated CBM0 correction within the orbit feedback bandwidth

Introduction

1. P. Kallakuri et al., PRAB 25, 082801 
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Proposed orbit to rf phase feedback configuration

Closed loop schematic of proposed orbit to RF phase feedback method
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§ Feedback model to suppress CBM0 oscillations is developed based on synchrotron oscillation theory.
§ Derivative of phase error is computed using dispersion and measured position at dispersive bpms,

§ Transfer function from rf phase noise to beam position deviation represents the open loop dynamics.
– Under damped harmonic oscillator with resonant peak at synchrotron frequency.
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𝐱      -  Horizontal position deviation
𝜼      -  Dispersion
Φ     -  Beam phase
𝜔!"  -  RF frequency

𝛼#    -  Momentum compaction factor
𝛼%    -  Damping rate
𝛺   -  Synchrotron frequency
𝜃      -  RF phase noise
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§ Orbit feedback algorithm used for corrector drives is used to generate RF phase setpoints. 
§ Phase computations are incorporated as an additional row in Inverse Response Matrix (IRM) dot product. 

Experimental setup – Orbit feedback controller with RF actuator
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§ Coupled bunch mode zero correction is demonstrated using,
– APS-U prototype FOFB system with 22.6 kHz sampling rate, 4 fast correctors and 12 BPMs. 
– Operations lattice where synchrotron frequency (2.2 kHz) is outside the FOFB bandwidth (920 Hz).

Proof of concept experiments with operations lattice
                                                Synchrotron frequency outside orbit feedback bandwidth1
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§ Achieved significant suppression around synchrotron frequency with orbit to RF phase feedback.
§ Stable FOFB + CBM0 correction

• Retained 920 Hz orbit feedback bandwidth. Motion at 360 Hz is not affected.
1. P. Kallakuri et al., PRAB 25, 082801 
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Simulation model for prototype FOFB + CBM0 correction1

§ Developed a MATLAB/simulink model for prototype FOFB+CBM0 
correction setup using theoretical knowledge and measurement-
based system identification.

§ Open loop and closed loop simulation models are validated by 
comparing model responses against measurements.

Simulation responses are in good agreement with measurements.

Simulation vs Measurements - Horizontal 
position responses to pulse input at Phase drive 

Simulation vs Measurements – Input disturbance attenuation 
at corrector and phase drives
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1. P. Kallakuri et al., PRAB 25, 082801 
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Coupled bunch mode zero correction within orbit feedback bandwidth
                                                                         Experimental study with low-alpha lattice

§ 6 GeV low-alpha lattice: Synchrotron frequency (60 Hz) is within the  orbit feedback bandwidth (90 Hz).
– Large RF system noise at 60 Hz harmonics.

§ Real time feedback system (RTFB) is used  - orbit feedback system for APS operations
– 38 fast correctors and 154 BPMs to deal with large noise.
– Limited functionality compared to prototype controller with 1.5 kHz sampling rate.

§ Stable combined operation of RTFB + CBM0 correction.

§ Partial suppression at synchrotron frequency when 
feedbacks are operated individually.

§ More suppression at 60 Hz with both feedbacks running 
together.  

Cumulative mean square orbit motion with different 
feedback configurations
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BPM responses measured at 154 BPMs around the storage-ring 

PSDs of BPM errors at all 154 BPMs in open loop and different 
closed loop configurations. 

§ BPMs in the high dispersion area has larger 
magnitudes compared to others. 

§ Individual operation of RTFB or CBM0 
correction partially suppressed 60 Hz 
– Frequencies beyond 90 Hz are amplified.

§ Narrow resonant increase of RF noise at 60 
Hz harmonics when high frequency motion is 
amplified. 

§ RTFB + CBM0 correction
– Significant suppression at 60 Hz 
– High frequency motion amplified by 

individual feedback operation is 
attenuated up to 240 Hz. 
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Reduced feedback control efforts during combined operation

Comparison of drive efforts of each feedback individual operation with simultaneous operation. 

§ Corrector and phase drive signals indicate feedback control efforts required to perform necessary correction. 
§ During combined operation,  
– Energy and betatron components are corrected simultaneously, and feedback errors will be small. 
– Drive magnitudes are less compared to respective individual operation of each feedback.
– More orbit motion suppression with less control effort from corrector and phase drives.

(A
2 )
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Conclusions

§ Successfully demonstrated CBM0 correction within the orbit feedback bandwidth via experiments with  
low-alpha lattice setup. 

§ CBM0 oscillations are damped using orbit to RF phase feedback method.
– Energy-induced component is extracted from measured orbit and RF phase control signal is 

generated as if it were another corrector drive in the orbit feedback algorithm. 

§ Individual operation of RTFB and CBM0 correction resulted in partial suppression at synchrotron 
frequency. 

§ The combination of CBM0 correction and RTFB was significantly more effective in suppressing 
synchrotron frequency. 
– Achieved better orbit motion suppression and reduction in feedback drive efforts.




