Commissioning of ThomX Compton Light Source

<u>Iryna Chaikovska (IJCLab, Paris-Saclay university)</u> on behalf of the ThomX collaboration

Laboratoire de Physique des 2 Infinis

Outline

Compton light sources

- ThomX facility: compact Compton light source
- ThomX commissioning status
- Perspectives-Summary

Sir Joseph John Thomson (1856 -1940)

Thom

X-rays

11/09/2023

Compton light sources

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

 $\left< \frac{\mathrm{d}N}{\mathrm{d}t} \right> = \sigma_T \mathcal{L}$

 $\sigma_{\scriptscriptstyle T} \approx 6.6 \times 10^{-25} \ {\rm cm}^2$

→ Compton/Thomson cross section

→ Compton/Thomson cross section

➢ e⁻ charge= ~1 nC/bunch

X-ray sources - Brightness

X-ray sources - Brightness

<u>Synchrotrons</u>:

Large-scale facilities, limited access time High degree of : power, monochromaticity, coherence

Compact Compton sources :

High brightness beam on the laboratory-scale facilities

(hospitals, labs, museums...)

Beam is produced in a untypical way

- Compactness (footprint ~ 100 m²)
- Tunable X-ray beam energy
- Large X-ray energy range (keV to MeV)
- High brightness $10^{11} 10^{13}$ ph/(s.mm².mrad²) in 0.1% BW - Flux $10^{12} - 10^{13}$ ph/s

X-ray tubes :

Laboratory-scale sources Lack of: power, monochromaticity, coherence

ThomX facility

Compact Compton light source

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

ThomX : inside the Orsay campus

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

ThomX : inside the Orsay campus

Paris-Saclay

UNIVERSITE PARIS-SACLAY

ThomX facility

ThomX control system is based on TANGO

ThomX is a demonstrator & research platform 2m

117

T∆NGÂ

11/09/2023

ThomX facility

ThomX control system is based on TANGO

Laser /Cavity system

- average power 100W
- Stored power up to 1 MW (30 mJ/pulse)

Accelerator

- 1 nc / bunch, f_{rep} 50 Hz
- 50-70 MeV
- Ring, f_{rep} 16 MHz
- σ_e ~ 70 μm
- $\epsilon_{N} \approx$ 5-10 mm.mrad
- $\tau_e \sim 10-30 \text{ ps}$

X-ray beamFlux ph/sBrightness ph/s/mm² / 0.1% BW / mrad²Transverse size of the source

E_x on axis

ThomX is a demonstrator & research platform 2m

TΔNG

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

10¹³

10¹¹

70 µm

40-90 keV

ThomX integration

Sept 2017

Oct 2018

From 2017 to 2023

End of 2018

11/09/2023

12th International Beam Instrumen

ThomX beam diagnostics

- <u>Charge</u> (3 ICT from Bergoz @ linac entrance, @ linac exit,
 @ TL + 2 Faraday cups @ beam dumps + 12 BPM in the SR)
- Position (linac/TL: 5 stripline BPM (150 mm), SR: 12 BPM button-type with 4, 6 and 8 electrodes)
- Diagnostics stations (5 stations on linac/TL/EL: calibration plate, YAG/Ce, OTR 100 µm thick screens + Sapphire plate + hole array)
 - transverse profile (imaging system)
 - > emittance (quadrupole scan)
 - energy (hor. beam position and size after the dipole)
 - bunch length (Cherenkov radiation + streak camera)
- Bunch transverse profile and bunch length in the SR (Visible Synchrotron Radiation Monitor → synchrotron radiation from a dipole + CCD/streak camera)
 - Beam Losses (optical fibers, scintillators).

ThomX facility: milestones

AUTORITÉ DE SÛRETÉ NUCLÉAIRE	Phase of operation (ASN)	Max. e- energy (MeV)	Bunch charge (nC)	Repetition frequency (Hz)	Description
	I	50	0.1	10	LINAC
	II	50	0.1	10	INJECTOR + ring
	ll(bis)	50	0.1(1)	10 (50)	INJECTOR + ring + X-rays
	Ш	70	1	50	Nominal operation

11/09/2023

asn

ThomX commissioning

Linac, Transfer Line and Extraction Line

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

ThomX injector

Photocathode RF gun

Injector specification

Parameter	Nom. value	Measured	Units
Energy	50/70	50*	MeV
Charge, commissioning/nom.	0.1/1	0.1*	nC
Nb. of bunches per RF pulse	1	1	
Energy spread, rms	<1	0.02	%
Emittance (rms, normalized)	<5	<5	mm∙mrad
Bunch length, rms	<5	-	ps
Average current	50	1	nA
Pulse repetition rate	50	10*	Hz

*Limited by the ASN authorization (phase 2bis)

→ 2.5-cell RF gun : Ez = 80 MV/m @ 6 MW to reach E = 5 MeV, Charge 0.1/1 nC

→ LIL type 4.8-meter long accelerating structure (2998.55 MHz) to reach ~45 MeV @ 9 MW

ScandiNova 3 GHz modulator Toshiba klystron E37310

Accelerating structure

1170

ThomX commissioning

Storage Ring

11/09/2023

Ring lattice and parameters

- 8 Dipoles
- 24 Quadrupoles
- 12 Sextupoles
- 2 Kickers
- 1 Septum
- ▶ 1 RF cavity
- 12 BPM
- 12 Correctors

Parameter	Value/Units
Beam energy	50-70 MeV
Bunch Charge	1 nC
Bunch length (rms)	~30 ps
Circumference	18 m
Revolution frequency	16.7 MHz
Current	16.7 mA
RF frequency/Harmonics	500/30 MHz
Momentum compaction	0.0125 - 0.025
Betatron tunes	3.17/1.64
Natural chromaticity	-9/-13
Damping time trans./long.	1.2/0.6 s
Repetition frequency	50 Hz (20 ms)
Beam size at the IP	70 µm
Nominal RF Voltage/cavity	300 kV (500 kV max)
Energy loss per turn	1.57 eV

ThomX SR: L = 18 m, T = 60 ns, $f_{rep} = 16.7$ MHz

11/09/2023

Ring beam dynamics

The operation and its commissioning is a big challenge due to:

- high particle density (1 nC/bunch) and low energy operation (50-70 MeV)
- mismatched beam injection
- absence of the synchrotron damping (stored time << damping time)</p>
- strong impact of collective effects (intrabeam and Compton scattering, coherent synchrotron radiation, ion instabilities, etc.)

Beam dynamics is very different from usual dynamics in synchrotrons

- longitudinal mismatch of the injected bunch and strong coherent synchrotron radiation => a transient microbunching regime (~ 10 µs).
 Still controlled at lower charge <100 pC but beam losses and increase in transv. emittance @higher charge (~ 1 nC).
- the intrabeam and Compton scattering, Touschek effect act on the beam dynamics in long term (~ ms) compared to the transient regime => beam losses, increase in transv. emittance and energy spread

11/09/2023

Injection. BPM single pass and turn-by-turn data, BLM signals.

Phase	Description
B.1	Injection and first turn : injection, threading, commissioning beam instrumentation
B.2	Establish circulating beam: closed orbit, orbit correction, tunes, chromaticity
B.3	Stored beam and extraction: precise measurements, BBA, feedback systems, beam diagnostics (SRM)
B.4	Machine physics: LOCO, beta beating, beta function and dispersion, diagnostics, beam dynamics studies

The fast injection and extraction are ensured by a septum and two fast kickers implying single-turn on-axis injection

- Transfer Line : Hor/Vert steerers. Screen and BPM before injection dipole
- Search for proper injection dipole, septum and kicker parameters
- Goal: find signal on the first BPM in the ring + threading
- 🕨 No signal 🚱 🛞
 - > We temporary added custom/simple diagnostics : scintillator, fiber, LANEX screen, pick-up electrode near beampipe to facilitate the first injection
 - > Discovered wrong BPM cabling and unplugged BPM

Injection. BPM single pass and turn-by-turn data, BLM signals.

Phase	Description
B.1	Injection and first turn : injection, threading, commissioning beam instrumentation
B.2	Establish circulating beam: closed orbit, orbit correction, tunes, chromaticity
B.3	Stored beam and extraction: precise measurements, BBA, feedback systems, beam diagnostics (SRM)
B.4	Machine physics: LOCO, beta beating, beta function and dispersion, diagnostics, beam dynamics studies

The fast injection and extraction are ensured by a septum and two fast kickers implying single-turn on-axis injection

30+06 3				
2.5e+06				
2e+06				
1.5e+06				
1e+06				
500,000	A 11 4-1	han	in M	mm

- Transfer Line : Hor/Vert steerers. Screen and BPM before injection dipole
- Search for proper injection dipole, septum and kicker parameters
- Goal: find signal on the first BPM in the ring + threading
- 🕨 No signal 🚱 🛞
 - > We temporary added custom/simple diagnostics : scintillator, fiber, LANEX screen, pick-up electrode near beampipe to facilitate the first injection
 - > Discovered wrong BPM cabling and unplugged BPM
 - > BPM signal was detected 👍

12th International Beam Instrumentation Conference (Saskatoon, Canada)

First turn. BPM single pass and turn-by-turn data, BLM signals.

- Signal on the first BPM in the ring : OK
- With only dipoles : beam passes a half-ring (in agreement with simulations)
- Quads switched ON to nominal values : First turn?
- Manual trajectory correction. No closed orbit, ring is "open"

First turn. BPM single pass and turn-by-turn data, BLM signals.

Storage. BPM turn-by-turn data and BLM signals

RF cavity **OFF**

- Injection optimization and further trajectory correction
- SVD for trajectory correction with response matrix from the open line model
 - > Improved, but no more turns. Where is the problem?
 - Obstacle? Quadrupoles?
 - Try to switch OFF the quads on the last ring sector. Sign of the presence of the 2nd and 3rd turns on BLM (scintillator and FBLM) signals
 - Quads polarity check, found one of the opposite polarity

12th International Beam Instrumentation Conference (Saskatoon, Canada)

2

Storage. BPM turn-by-turn data and BLM signals

RF cavity OFF

- Injection optimization and further trajectory correction
- SVD for trajectory correction with response matrix from the open line model
 - Improved, but no more turns. Where is the problem?
 - Obstacle? Quadrupoles?
 - Try to switch OFF the quads on the last ring sector. Sign of the presence of the 2nd and 3rd turns on BLM (scintillator and FBLM) signals
 - Quads polarity check, found one of the opposite polarity

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

Storage. BPM turn-by-turn data and BLM signals

- Injection optimization and further trajectory correction
- SVD for trajectory correction with response matrix from the open line model
 - Improved, but no more turns. Where is the problem?
 - Obstacle? Quadrupoles?
 - Try to switch OFF the quads on the last ring sector. Sign of the presence of the 2nd and 3rd turns on BLM (scintillator and FBLM) signals
 - Quads polarity check, found one of the opposite polarity
- Stable closed orbit! Important milestone is achieved

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Car

cavity OFF

03-Oct-2022 20:55:37

Storage with RF cavity. BPM and BLM signals. Turn-by-Turn data.

- Switching the RF cavity ON : 500.02 MHz (nominal), up to 50 kV. Goal: beam storage
- We introduced a new observable: mixed signal from the BPM electrodes and 500 MHz from timing system (ring Low Level RF)
 - > Due to this, we could observe with the o-scope when the frequency of the RF cavity matched with the revolution frequency of the e- in the ring
 - > After several scans of the RF cavity frequency, we found that the beam can be stored at higher values of the RF frequency only. Why? ③

RF Cavity voltage ~30 kV (up to 100 kV) $f_{RF} = 500.41$ MHz cf. nominal 500.02 MHz => ~14 mm circumference error

Storage with RF cavity. BPM and BLM signals. Turn-by-Turn data.

- Switching the RF cavity ON : 500.02 MHz (nominal), up to 50 kV. Goal: beam storage
- We introduced a new observable: mixed signal from the BPM electrodes and 500 MHz from timing system (ring Low Level RF)
 - > Due to this, we could observe with the o-scope when the frequency of the RF cavity matched with the revolution frequency of the e- in the ring
 - > After several scans of the RF cavity frequency, we found that the beam can be stored at higher values of the RF frequency only. Why? (3)
- Stable storage achieved (up to 1 sec, next trigger). Orbit correction, tune measurements, chromaticity tuning. <u>Important milestone is achieved</u> (2)

RF Cavity voltage ~30 kV (up to 100 kV) f_{RF} = 500.41 MHz cf. nominal 500.02 MHz => ~14 mm circumference error

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

Closed orbit

The RF frequency is found to be 0.3-0.4 MHz higher. A big difficulty for synchronization with the Fabry-Perot cavity laser (limited BW, ≤ 0.25 MHz)

11/09/2023

- The RF frequency is found to be 0.3-0.4 MHz higher. A big difficulty for synchronization with the Fabry-Perot cavity laser (limited BW, \leq 0.25 MHz)
- Should find the reason and correct it !
- Several studies undertaken: alignment, tracking in realistic fieldmaps

- The RF frequency is found to be 0.3-0.4 MHz higher. A big difficulty for synchronization with the Fabry-Perot cavity laser (limited BW, \leq 0.25 MHz)
- Should find the reason and correct it !
- Several studies undertaken: alignment, tracking in realistic fieldmaps
 - It was found that the beam trajectory in the dipoles is shorter wrt. to the ideal path => shorter pathlength and so smaller total circumference

Features of dipoles			
Quantity	14 + 1 (pre-serie)		
Radius of curvature	352 mm		
Main field B ₀	0.7 Tesla		
Gap	42 mm		
Good field region	+/- 20mm		
Integral of field	184.59 mT.m		
Current max.	275 Amp		
Beam energy	from 50 to 70 MeV		

Short and small-radius dipoles

12th International Beam Instrumer

- To guarantee the high-intensity X-ray production
 - <u>Temporal solution</u>: new optics with higher value of the MCF (already deployed)
 - <u>Reliable long-term solution:</u> limit the dipole FF with the metallic plates (OPERA simulations ongoing) or mechanically increase the circumference by ~14 mm (studies ongoing, can imply the machine symmetry break up)

- The RF frequency is found to be 0.3-0.4 MHz higher. A big difficulty for synchronization with the Fabry-Perot cavity laser (limited BW, \leq 0.25 MHz)
- Should find the reason and correct it !
- Several studies undertaken: alignment, tracking in realistic fieldmaps
 - It was found that the beam trajectory in the dipoles is shorter wrt. to the ideal path => shorter pathlength and so smaller total circumference

ThomX commissioning

Fabry-Perot cavity and X-line

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

Fabry-Perot cavity @ThomX

Parameters	Nom. values
Laser repetition frequency	33.3 MHz
Laser wavelength	1031 nm
Optical cavity length	8.994 m
Cavity finesse	40 000
Waist size in the IP	70 µm
Injected power (average)	100 W
Stored power (average)	500 kW (1 MW)

Optical table is installed on the *hexapode (µm precision)*

Optical system of the Fabry-Perot cavity

Commissioning : Fabry-Perot cavity

Already obtained

- On site: fully assembled. Measured FP-cavity gain: 9500. Stored power: 30 kW
- 80kW measured with ThomX cavity
 - > With 133 MHz laser
 - > On the test site, not in the accelerator tunnel
- 400kW measured with the ThomX cavity prototype (not stable)
- 200kW measured with the ThomX cavity prototype (long term)

To do

- Mitigation of the high-power issues
 - Huge average power should be stored inside the optical cavity.
 - Mirror thermoelastic deformations (cavity geometry)
- ► Increase the stored laser power in the cavity → 500 kW
 - 70W (max amp power) x ~70% (max coupling) x 10k (max FP-cavity gain)
- Synchronisation: Fabry-Perot Cavity/Ring with the ~ps jitter
 - A factor of 1000-2000 for the X-ray production

X-line design

X-line design

11/09/2023

X-line design

11/09/2023

The first X-rays (••)

11/09/2023

12th International Beam Instrumentation Conference (Saskatoon, Canada)

First X-ray signal

X-ray flux measurement

Measured Flux = ~6·10⁶ ph/s Expected ~ (4 -10)·10⁶ ph/s (uncertainty on stored e⁻ bunch charge)

Near future: **100 kW** of stored laser power + **synchronisation** of the e⁻/laser beams

 \rightarrow Expected Flux ~ 10¹⁰ - 10¹¹ ph/s

11/09/2023

First spectrum and beam image in X-hutch

7.18 keV

Summary-Perspectives

- ThomX is a research platform ! Different from commissioning/operation of the user facility.
- The ThomX commissioning is still ongoing. Next step : the 1st X-ray experiment and e⁻/laser synchronization, injector/ring optimization, beam physics, start the ring feedbacks, increase laser power, e⁻ charge and energy.
- At this stage, overall accelerator operation is within the TDR expectations Great SOLEIL partnership!
- Learned lessons :
 - Thorough subsystem commissioning. Delivered performance of sub-accelerators before starting the next commissioning phase. No rush. Commissioning interleaved with solving the technical issues introduces delays.
 - > Available and well-understood/easy to install diagnostics during commissioning.
 - Hardware/control system checks before beam commissioning. Control system and machine status applications ready and tested.
 - Available manpower (technical support + physicists). Expertise doesn't scale with the accelerator size. In-house experience in commissioning.
 - > Good and realistic planning is crucial (anticipate potential problems/failures).

