tudy of Visible Synchrotron Radiation Monitor on SOLEIL

ren

IBIC 2023 A. Moutardier^{*}, G.Cauchon, M. Chevrot, Z. Fan, N. Hubert, S. Kubsky, M. Labat, M. Thomasset, Synchrotron SOLEIL, Gif-Sur-Yvette, France

*alexandre.moutardier@synchrotron-soleil.fr

In the scope of SOLEIL II, the booster must also be upgraded to reduce from 130 to 5 nm.rad the emittance of the beam delivered to the ring. Control of the emittance in the booster will become crucial to ensure the nominal performance of the storage ring injection. The SOLEIL I booster is already equipped with a Visible Synchrotron Radiation Monitor (MRSV). This equipment, made of an extraction mirror and a simple optical system, was originally planned to be used only for beam presence verification but has not been used routinely for operation since the commissioning in 2005. The control and acquisition systems had to be refreshed to be usable again and allow the beam size measurement along the booster energy ramp. The extraction mirror was replaced due to unexpected degradation leading to a second spot appearing on the camera. This paper traces back the MRSV upgrades from understanding the cause of mirror degradation until mirror replacement and the first proper beam visualisation, achieved at the beginning of 2023.

MRSV theory

1.0405 m

MRSV : Visible Synchrotron Radiation Monitor

MRSV design

Measure

Point-Spread-Function (PSF)

i.e. light emission by an unique electron

Figure 3: SRW [3] simulations of synchrotron radiation for a) one electron (PSF), b) a beam.

Image spot size = convolution of real electron beam size and PSF

Double spot issue

Damaged mirror

1.0

0.8

 \leftarrow **Iridescence** = Heat damage

Thermal study (a) (b)

Figure 4: MRSV image 18 years after the SOLEIL commissioning.

- 2023: extraction mirror replace \Rightarrow Fig. 2
- 2 weeks after: Image already distorted

Booster's Figure 6: MRSV extraction mirror, a O_2 plasma chamber [4]. after nearly 18 years of operation.

Mirror surface study

- 4 µm deep valley
- Melt silver down valley
- Mirror deformation :

Angle between upper and lower half of the Figure 8: Interferometry [5] of MRSV extraction mirror surmirror face. (a) 3D map, (b) line cut

Black strip + mirror deforma- along top image.

- \leftarrow Black strip = carbon deposition

For mirror surface study, the carbon deposition was removed using

Figure 7: Ansys [6] thermal simulation of Pyrex mirror (a) and copper one (b), both silver coated.

On the mirror :

- Total average power : 6 W
- Average power density : $0.26\,\mathrm{W\,mm^{-2}}$

	(a)	(b)
Mirror		
heat transfer	1.2	400
$(W m^{-1} K^{-1})$		
Max heat	496°	197°
Without		

Figure 5: MRSV image 2 weeks after mirror exchange.

tion \Rightarrow 2 spots on images

1000° coating

Conclusion

- Double spot issue comes from mirror degradation
- Those degradations are due to overheating because of poor heat transfers of Pyrex glass
- A copper-based mirror is installed to increase heat transfers and hopefully prevent mirror degradation
- MRSV can be used to measure electron beam size, hence beam emittance
- This work is useful for the SOLEIL booster upgrade and associated diagnostics design.

References

GigE acA1920-50gm Basler ace camera https://docs.baslerweb.com/aca1920-50gm[2] Å. Andersson and al., Determination of a small vertical electron beam profile and emittance at the Swiss Light Source, NIM A 591 (3), 437 - 446 (2008).

[3] O. Chubar and P. Elleaume, Accurate and efficient computation of synchrotron radiation in the near field region, Proceedings of EPAC'98, Stockholm, Sweden, 1998, 88.

[4] DIENER Pico Diener Plasma GmbH & Co. KG, Ebhausen, Germany.

[5] firebolt, (GBS) mbH, Ilmenau, Germany

[6] Ansys (R) Academic Research Mechanical, Release 2020R2, 2020.

Acknowledgements

S. Morand, M.-A. Tordeux (SOLEIL).