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Emittance serves as measure of the transverse phase space occupied by the beam as well as a 
measure of beam quality in many applications. By definition emittance is:

𝜀!" = 𝜎!"𝜎!#" − 𝜎!!#"

where 𝜎!" and 𝜎!#"  are variances, and 𝜎!!# is covariance of beam distribution. 
Commonly used technique is scanning of a focusing element such as a quadrupole or a 

solenoid and measuring dependence of the transverse beam size on a profile monitor. The 
obtained data are fit with a parabola which coefficients are used for calculating emittance. In 
some cases, even slight changes in the data can cause substantial variation of the emittance 
value. This is due to that we are subtracting two large numbers. 

The horizontal axis shows ratio of 
distance from the solenoid center to the 
profile monitor and solenoid’s focal 
length. Vertical axis shows the square of 
the r.m.s. beam size in mm2.  The maximal 
difference between the parabolic fit 
coefficients is 0.2%. Distance from the 
solenoid to the profile monitor is 3.63 m. 
Emittance for the blue curve is 0.19 mm 
mrad, and for the red curve it is 0.11 mm 
mrad, difference is factor of 2.

MODIFICATION OF SCAN

We can present beam angular distribution as sum of correlated and uncorrelated parts, so that 
for each particle 𝑥# = 𝛼𝑥 + (𝑥′ , where 𝛼 is correlation factor and (𝑥′ is uncorrelated angular 
spread. Correlation factor can be found from the covariance:

𝛼 = ⁄𝜎!!# 𝜎!"

Beam emittance can be found 

𝜀!" = 𝜎!$" 𝜎%!#$"

where 𝜎!$"  is r.m.s beam size at focusing element, and 𝜎%!#$"  is uncorrelated angular spread.
After passing through a focusing element with focal length 𝐹 and drift with length 𝐿 the beam

size at the observation point can be found

𝜎!" = 1 −
𝐿
𝐹

"

𝜎!$" + 2𝛼𝐿 1 − &
' 𝜎!$

" + 𝐿" 𝛼"𝜎!$" + 𝜎%!#$"

The minimum size is observed when 1 − ⁄𝐿 𝐹 = −𝛼𝐿 and minimal size is:

𝜎!()*" = 𝐿"𝜎%!#$"

Now we need to find beam size at focusing element to calculate beam emittance. For this 
purpose, we can measure the beam size when focusing element is off ( ⁄1 𝐹 = 0)

𝜎!" = 𝜎!$" + 2𝛼𝐿𝜎!$" + 𝛼"𝐿"𝜎!$" + 𝜎!()*"

𝜎!$" =
𝜎!" − 𝜎!()*"

1 + 𝛼𝐿 " =
𝜎!" − 𝜎!()*"

⁄𝐿 𝐹()* "

Emittance can be found using formula 

𝜀" =
𝜎!" − 𝜎!()*"

⁄𝐿 𝐹()* "
𝜎!()*"

𝐿"

If the beam is converging to the minimal size with focusing element off or close to such 
condition, then there can be significant error in determination of the beam size at the focusing 
element. In this case we can use the setting of the focusing element providing for substantially 
different beam size and use the formula below for calculation of the beam size

𝜎!+" =
𝜎!" − 𝜎!()*"

1 − ⁄𝐿 𝐹 " + 2𝛼𝐿 1 − ⁄𝐿 𝐹 + 𝐿"𝛼"

If we set ⁄1 𝐹 = 𝛼 (passing through the focusing element removes linear correlation) and 
measured beam size will be

𝜎!" = 𝜎!$" + 𝐿"𝜎%!#$"

Because the beam is converging (𝛼 = ⁄−1 𝐿), this will require defocusing element which 
cannot be realized with solenoids. But we can set focusing so that waist will be achieved in the 
middle between focusing element and the profile monitor ( ⁄1 𝐹 = 𝛼 + ⁄2 𝐿). In this case beam 
size at profile monitor will be close to beam size in the focusing element. 

WEIGHTED FIT

Another approach for solving the problem is to utilize the weighted fit. In 
most cases well-known formulas or standard functions for the polynomial 
fit are used. Such approach implies that errors in the measurement of beam 
size are independent of beam size and are constant. The following error 
function is used for fit evaluation

𝜒" =1 𝜎(,-." − 𝜎/)0"
"

Implementing multiple measurements at each setting of focusing element 
slows down the process. If we assume that relative error in the beam size 
measurement is relative constant, then we can modify the error function in 
the following way:

𝜒" =1 1−
𝜎/)0"

𝜎(,-."

"

Figure below shows the fitting curves for the same set of experimental data 
points with regur and weighted fits.


