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Abstract

Schottky spectra can be strongly affected by collective
effects, in particular those arising from beam-coupling
impedance when a large number of bunch charges are in-
volved. In such conditions, the direct interpretation of the
measured spectra becomes difficult, which prevents the ex-
traction of beam and machine parameters in the same way
as is usually done for lower bunch charges. Since no theory
is yet directly applicable to predict the impact of impedance
on such spectra, we use here time-domain, macro-particle
simulations and apply a semi-analytical method to compute
the Schottky spectrum for various machine and beam condi-
tions, such as the ones found at the Large Hadron Collider.
A simple longitudinal resonator-like impedance model is in-
troduced in the simulations and its effect studied in different
configurations, allowing preliminary interpretations of the
impact of longitudinal impedance on Schottky spectra.

INTRODUCTION

Theoretical reconstructions of Schottky spectra, such as
the matrix formalism proposed in [1, 2], or the Monte Carlo
approach used in [3, 4], are based on the assumption that
the synchrotron frequency distribution is known. Under
certain conditions, one can derive an analytical relation be-
tween the amplitude of the synchrotron oscillation and its
frequency (see below) allowing these methods to reconstruct
the Schottky spectrum from the synchrotron amplitude dis-
tribution. However, this relation has to be modified when
external forces, such as the one coming from beam-coupling
impedance, affect the longitudinal dynamics.

This study will briefly present the available theory relating
the amplitude of the synchrotron oscillation to its frequency,
as well as a commonly adopted approximation. The sec-
ond section will deal with the additional external forces
coming from impedance, extending the theory presented in
[5] to the case of a non-linear radio frequency (RF) bucket.
Finally, we will apply the developed theory to the particular
case of a longitudinal broad-band resonator, and will bench-
mark it against macro-particle simulations performed with
PyHEADTAIL [4, 6, 7], in the case of a proton bunch in the
Large Hadron Collider (LHC).

∗ christophe.lannoy@cern.ch

Synchrotron Oscillation
For an impedance-free environment, the equation of mo-

tion for the RF phase 𝜙 1 of a given particle is [8, Eq. (9.51)]:

𝑑2𝜙
𝑑𝑡2

+ Ω2
0 sin 𝜙 = 0, (1)

assuming that the synchronous phase 𝜙𝑠 is such that sin 𝜙𝑠 is
small enough to be neglected (i.e. no acceleration or energy
loss compensation). The nominal synchrotron frequency2

reads
Ω2

0 = 𝜔2
0

−𝜂ℎ𝑒𝑉
2𝜋𝐸0𝛽2 cos 𝜙𝑠, (2)

where 𝑒 is the elementary charge, and where the relevant
machine parameters are: the revolution frequency 𝜔0, the
slippage factor 𝜂, the amplitude of the RF voltage 𝑉, the rf
harmonic number ℎ, the relativistic factor 𝛽, and the refer-
ence energy 𝐸0. Note that by convention 𝜂 is positive above
transition, such that 𝜂 and cos 𝜙𝑠 always have opposite sign.

Equation (1) is similar to the non-linear pendulum equa-
tion, hence the synchrotron frequency Ω𝑠 of the particle can
be written [9]

Ω𝑠(𝜙) = 𝜋

2𝒦 [sin (𝜙
2 )]

Ω0, (3)

where 𝜙 is the RF phase amplitude of the synchrotron os-
cillation and 𝒦 is the complete elliptic integral of the first
kind [10, Eq. (8.112.1)].

Equation (1) can also be approximated by replacing the
sine function with its Maclaurin series expansion up to the
third order, which yields

𝑑2𝜙
𝑑𝑡2

+ Ω2
0 (𝜙 − 𝜙3

6 ) + 𝒪(𝜙5) = 0. (4)

This last equation has been studied in [9], and an approxi-
mation of the oscillation frequency is given by

Ω𝑠(𝜙) = Ω0 (1 − 𝜙2

16 ) . (5)

Figure 1 illustrates how the exact solution from Eq. (3) com-
pares with the approximation from Eq. (5). The amplitude
distribution corresponding to a Gaussian bunch profile of
standard deviation 𝜎 = 31 ns is also shown in order to com-
pare the most populated region with the zone where the
1 Above transition 𝜙 has to be taken as the difference between the RF phase

of the particle and 𝜋.
2 By nominal synchrotron frequency, we mean the limit of the synchrotron

frequency for synchrotron amplitudes approaching zero.
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approximation is valid. As can be seen, the approximation
holds for an amplitude 𝜙 ≲ 0.8𝜋, which is the region where
the vast majority of the particles are. Noting that 𝜙 = ℎ𝜔0𝜏,

Figure 1: Comparison between the exact and approximate
expressions of the synchrotron frequency as a function of
the oscillation amplitude. The distribution of amplitudes for
a Gaussian bunch is also shown.

with 𝜏 the arrival time difference between a given particle
and the synchronous particle, we can also express the am-
plitude of the synchrotron oscillation in terms of the time
amplitude defined by

𝜏̂ ≡ 𝜙/ℎ𝜔0. (6)

THEORETICAL DESCRIPTION
In this section, we investigate the influence of impedance

on the longitudinal dynamics of a particle and, more specif-
ically, how it can affect its oscillation frequency. A given
force 𝐹𝑖 acting longitudinally on the particle will impact the
phase dynamics with

𝐹𝑖 = 𝑑𝑝
𝑑𝑡 = 𝑑(𝑝0 + 𝛿𝑝)

𝑑𝑡 = 𝑑(𝛿𝑝)
𝑑𝑡 = 𝑝0

𝜂 𝜏̈ = 𝑝0
𝜂ℎ𝜔0

̈𝜙, (7)

where we used the fact that 𝑝0 is constant, the definition of
the slippage factor, and Eq. (6). The equation of motion with
an additional external force is given by combining Eqs. (1)
and (7), which yields

̈𝜙 + Ω2
0 sin 𝜙 = 𝜂ℎ𝜔0

𝑝0
𝐹𝑖(𝑡). (8)

Impedance Force
In this study, we will focus on the force arising from

the longitudinal beam-coupling impedance, which is given
by [11, Eq. (4.18)]

𝐹𝐼𝑚𝑝(𝑡) = 𝑒 [ ⃗⃗⃗⃗ ⃗⃗𝐸 + ⃗⃗⃗⃗ ⃗⃗ ⃗𝛽𝑐 × ⃗⃗⃗⃗ ⃗⃗𝐵]∥ (𝑡, 𝑧 = 𝛽𝑐𝜏(𝑡))

= − 𝑁𝑒2

2𝜋𝐶 ∫
∞

−∞
𝑍∥(𝜔)Λ̂(𝜔)𝑒𝑗 𝜔𝑧

𝛽𝑐 𝑑𝜔, (9)

where 𝐶 stands for the circumference of the accelerator,
𝑁 for the number of particles in the bunch, 𝑍∥(𝜔) for the
longitudinal impedance, and Λ̂(𝜔) for the beam spectrum
normalised by the bunch intensity. The force has to be taken

at the current position of the particle, i.e. at a distance
𝑧 = 𝛽𝑐𝜏 behind the synchronous particle. Note that the
bunch spectrum 𝜆̂(𝜔) of [11, Eq. (4.18)], has been replaced
by the beam spectrum Λ̂(𝜔) in order to take into account
the possible multi-turn wake (this approach is equivalent to
adding the forces coming from different turns).

The beam spectrum is the Fourier transform of the beam
profile. For a single bunch in a circular accelerator, the latter
can be expressed as the convolution of the bunch profile 𝜆(𝑡)
with a Dirac comb of the revolution period 𝑇0. Using the
convolution theorem, the beam spectrum can be written

Λ̂(𝜔) = ℱ{𝜆(𝑡) ∗ Ш𝑇0
(𝑡)}

= ℱ{𝜆(𝑡)} ℱ{Ш𝑇0
(𝑡)}

= 𝜆̂(𝜔)𝜔0Ш𝜔0
(𝜔), (10)

where ∗ stands for the convolution operation and where the
Dirac comb of period 𝑇0 is defined as follows

Ш𝑇0
(𝑡) =

∞
∑

𝑝=−∞
𝛿(𝑡 − 𝑝𝑇0).

Substituting Eq. (10) in Eq. (9) , we have

𝐹𝐼𝑚𝑝(𝑡) = −𝐼𝑒
𝐶

∞
∑

𝑝=−∞
∫

∞

−∞
𝑍∥(𝜔)𝜆̂(𝜔)𝑒𝑗 𝜔𝑧

𝛽𝑐 𝛿(𝜔 − 𝑝𝜔0)𝑑𝜔

= −𝐼𝑒
𝐶

∞
∑

𝑝=−∞
𝑍∥(𝑝)𝜆̂(𝑝)𝑒𝑗𝑝𝜔0𝜏(𝑡), (11)

where we used the compact notation 𝑍∥(𝑝) ≡ 𝑍∥(𝑝𝜔0),
𝜆̂(𝑝) ≡ 𝜆̂(𝑝𝜔0), and the average current 𝐼 ≡ 𝑁𝑒 𝜔0

2𝜋 .

General Equation of Motion
Combining Eqs. (2), (6), (8), and (11) yields

̈𝜙 + Ω2
0 sin 𝜙 = Ω2

0
𝐼

𝑉 cos 𝜙𝑠

∞
∑

𝑝=−∞
𝑍∥(𝑝)𝜆̂(𝑝)𝑒𝑗 𝑝

ℎ 𝜙. (12)

By expanding the sine and exponential functions into their
Maclaurin series

sin 𝜙 =
∞
∑
𝑛=0

(−1)𝑛

(2𝑛 + 1)!𝜙2𝑛+1, 𝑒𝑗 𝑝
ℎ 𝜙 =

∞
∑
𝑛=0

1
𝑛! ( 𝑗𝑝

ℎ )
𝑛

𝜙𝑛,

Eq. (12) can be written in the compact form

̈𝜙 + Ω2
0

∞
∑
𝑛=0

𝑆𝑛𝜙𝑛 = 0, (13)

with the coefficients 𝑆𝑛 defined by

𝑆𝑛 =
⎧{
⎨{⎩

−𝑍𝑛 : 𝑛 even,
𝑗𝑛−1

𝑛! − 𝑍𝑛 : 𝑛 odd,
(14)

and

𝑍𝑛 = 𝐼
𝑉 cos 𝜙𝑠

∞
∑

𝑝=−∞
𝑍∥(𝑝)𝜆̂(𝑝) 1

𝑛! ( 𝑗𝑝
ℎ )

𝑛

= 𝐼𝑗𝑛

𝑉 cos 𝜙𝑠 𝑛!ℎ𝑛

∞
∑

𝑝=−∞
𝜆̂(𝑝)𝑝𝑛 ×

⎧{
⎨{⎩

𝑅𝑒[𝑍∥(𝑝)] : 𝑛 even,
𝑗 𝐼𝑚[𝑍∥(𝑝)]: 𝑛 odd.
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In the last equality, we used the fact that 𝜆̂(𝑝), 𝑅𝑒 [𝑍∥(𝑝)],
and 𝐼𝑚 [𝑍∥(𝑝)] are respectively even, even, and odd func-
tions.

The idea behind the expansion performed above is that,
for small oscillation amplitudes, only the first order terms
can be kept. The shift of the nominal synchrotron frequency
is given by 𝑆1 while the non-linear terms will be responsible
for an amplitude dependent synchrotron frequency shift.

Broad-Band Resonator
We will now apply Eq. (13) to the particular case of a

broad-band resonator described by the following function

𝑍𝐵𝐵
∥ (𝜔) =

𝑅∥

1 − 𝑗𝑄 (𝜔𝑟
𝜔 − 𝜔

𝜔𝑟
)

,

where 𝑅∥ is the shunt impedance, 𝜔𝑟 the angular cut-off
frequency, and 𝑄 the quality factor. The values we will
use for these parameters are shown in Table 1 and corre-
spond to a first estimate of the broad-band part of the LHC
impedance [12, p. 71].

The even terms in Eq. (13) are responsible for the syn-
chronous phase shift and we assume that, in the particular
case of a broad-band resonator, their contribution can be
neglected. Expanding Eq. (13) up to the third order gives

̈𝜙 + Ω2
0 (𝑆1𝜙 + 𝑆3𝜙3) + 𝒪(𝜙5) = 0, (15)

which is similar to Eq. (4) where the factors 1 and −1
6 have

been generalised to the arbitrary coefficients 𝑆1 and 𝑆3. In
this case, the approximate synchrotron frequency is given
by

Ω𝑠(𝜙) = Ω0√𝑆1 (1 + 3𝑆3
8𝑆1

𝜙2) , (16)

as can be seen by substituting the function 𝜙(𝑡) = √𝐴Φ(𝑡)
(with 𝐴 an arbitrary number) in Eq. (4) and identifying the
coefficients.

SIMULATION
The simulation aims at reproducing the typical conditions

of an LHC proton fill at injection. The method used to
reconstruct the Schottky spectrum from the macro-particle
simulation is presented in [4] and the simulation parameters
are summarised in Table 1.

Table 1: PyHEADTAIL Simulation Parameters

Intensity 1.5 × 1011 protons per bunch
Energy per proton 450 GeV
Slippage factor 3.436 × 10−4

RF harmonic 35640
RF voltage 4 MV
LHC circumference 26.659 km
Bunch length (RMS) 𝜎 = 0.31 ns

Broad-band resonator
Shunt impedance 𝑅∥ = 31.1 kΩ
Cut-off frequency 𝜔𝑟 = 2𝜋 × 5 GHz
Quality factor 𝑄 = 1

Figure 2 presents an overall view (upper plot) of the sim-
ulated longitudinal Schottky spectrum together with a de-
tailed view of two regions (lower plots). It can be observed
that the broad-band resonator induces a shift of the nominal
synchrotron frequency (all the satellites moving toward the
central one). This shift is due to the term 𝑆1 and the new
nominal synchrotron frequency is Ω0√𝑆1. The broad-band
resonator will reduce the nominal synchrotron frequency for

Figure 2: Simulated longitudinal Schottky spectra with (blue) and without (orange) an LHC-like broad-band resonator.
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a machine operating above transition, as can be seen from
Eq. (14) (the opposite happens below transition). One can
also observe in Fig. 2 an amplitude-dependent synchrotron
frequency shift, as the alterations in the satellite shapes can
not be explained by a simple linear transformation involving
shifting and scaling of the original form. This effect is due
to the higher order terms 𝑆2𝑛+1, 𝑛 ≥ 1 in Eq. (13).

Figure 3 compares the macro-particle simulation with
the theoretical matrix formalism of Ref. [1], where the re-
lation between synchrotron amplitudes and frequencies has
been adapted, replacing Eq. (5) by Eq. (16) to take into
account the effect of impedance. The dashed red line cor-
responds to the matrix formalism where only the first or-
der term of the impedance contribution has been kept (i.e.
𝑍1 ≠ 0 and 𝑍3 = 0, which corresponds to 𝑆1 = 1 − 𝑍1 and
𝑆3 = −1/6 in Eq. (16)). As can be seen, the nominal syn-
chrotron frequency shift is well reproduced by the theory,
while the shift for non-zero amplitude particles, requires
higher order terms (𝑍𝑛).

Figure 3: Comparison of the macro-particle simulation
(blue) against the adapted matrix formalism, with Eq. (16)
including impedance terms 𝑍𝑛 up to the first (red) and third
(green) order. The A-B labels correspond to the shaded re-
gions of Fig. 2.

The dashed green line also includes the third order term of
the impedance contribution (i.e. 𝑍1 ≠ 0 and 𝑍3 ≠ 0, which
corresponds to 𝑆1 = 1 − 𝑍1 and 𝑆3 = −1/6 − 𝑍3). With the
third order impedance term, the theory is in good agreement
with the simulation.

One can also probe the validity of Eq. (16) by directly
extracting the relation Ω𝑠(𝜙) from the macro-particle sim-
ulation. This was done in Fig. 4 where each black dot cor-
responds to the synchrotron amplitude and frequency of a
given macro-particle. As before, one can observe that the
nominal synchrotron frequency shift is well reproduced by
the first order term 𝑍1, while the shift for larger amplitude
particles is correct with the third order theory, up to a certain
amplitude 𝜙 ∼ 1.25 rad. In order to extend the region where
Eq. (16) is valid, one would need to take into account the
fifth order term 𝑆5, in the equation of motion. However,
this is not crucial since the majority of the particles are well
described, as can be seen from the amplitude distribution.

Figure 4: Comparison of Eq. (16) including impedance
terms 𝑍𝑛 up to the first (red) and third (green) order, against
macro-particle simulation (black dots).

CONCLUSION
The aim of this work was to explore the effects of longitu-

dinal impedance on the Schottky spectrum. We first derived
a longitudinal equation of motion including the forces com-
ing from any impedance 𝑍(𝜔). The particular case of a
broad-band resonator was then studied in more detail and
the relation between synchrotron amplitude and frequency
was generalised to this situation, allowing existing theoreti-
cal reconstruction methods of Schottky spectra to include
impedance effects. The developed theory was shown to
be in good agreement with macro-particle simulations, by
correctly reproducing the amplitude-dependent synchrotron
tune shift.
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