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Abstract
At Diamond Light Source, the fast orbit feedback (FOFB)

uses one array of correctors and the controller is designed
using the internal model control (IMC) structure. The
Diamond-II upgrade will introduce an additional array of
fast correctors and a new controller that is designed using
the generalised modal decomposition, increasing the over-
all closed-loop bandwidth from 140 Hz to 1 kHz. Although
simulation results have shown that the resulting beam dis-
placement is within specification in all straights, they have
also shown that the performance on long straights is limited,
particularly in the vertical plane. In this paper, the controller
is tuned in order to increase the FOFB performance in long
straights by introducing a mode-by-mode regularisation pa-
rameter. The performance of the controller beyond 1 kHz is
assessed using new disturbance data and a new measurement
noise model, showing that the Diamond-II performance cri-
teria are met, even in the presence of measurement noise.

INTRODUCTION
At Diamond Light Source (Diamond), the fast orbit feed-

back (FOFB) attenuates disturbances in the storage ring and
reduces the root-mean square deviation of the electron beam
to ≤10 % of the beam size up to 140 Hz in both planes. The
FOFB uses 173 beam position monitors (BPMs) and 172
identical corrector magnets, and the control algorithm is
based on the internal model control (IMC) structure, which
is naturally amenable to systems with large time delays. The
controller is designed using the modal decomposition, which
decouples the multi-input multi-output (MIMO) systems into
sets of single-input single-output systems using the singular
value decomposition (SVD) of the orbit response matrix
(ORM) [1].

Due to advances in detector speed and resolution at
Diamond-II [2], the beam stability requirements are raised to
3 % of the beam size up to 1 kHz, such as shown in Table 1.
The increased closed-loop bandwidth in turn requires to in-
troduce an additional corrector type. The FOFB at Diamond-
II will use 252 slow correctors with a bandwidth of∼ 200 Hz
and 144 fast correctors with a bandwidth of ∼ 8 kHz. To
accommodate the fast correctors, the Diamond FOFB con-
troller has been extended and adapted to the Diamond-II
configuration [3]. Analogous to Diamond, the MIMO sys-
tem is decoupled into sets of two-input single-output (TISO)
and SISO systems using the generalised singular value de-
composition (GSVD), which is a two-matrix factorisation
∗ Work supported by Diamond Light Source
† Corresponding author: shohan.banerjee@diamond.ac.uk.

Table 1: Beam Size, Relative and Absolute Orbit Stability
Requirements at Standard Straight Source Points [2].

Parameter Diamond Diamond-II
Beam size H/V 123 µm/3.5 µm 30 µm/4 µm
Rel. stability 10 % up to 100 Hz 3 % up to 1 kHz
Abs. stability H/V 12 µm/0.35 µm 0.9 µm/0.12 µm
H: horizontal, V: vertical, BW: bandwidth

technique [4]. The decoupled systems are then embedded in
the IMC structure and the controllers designed using mid-
ranging control [5]. In addition, a tunable regularisation
matrix is included in the feedback loop to avoid large control
inputs and increase the robustness of the controller.

As part of the Diamond-II design, the performance of
the new control algorithm has been assessed using esti-
mates of the Diamond-II disturbance [6]. Although this
has shown that the Diamond-II controller meets the beam
stability requirements, it has also shown that the performance
for primary BPMs on the long straights of the new multi-
bend achromat (MBA) lattice is worse than on the standard
straights and mid straights. To reduce this performance dif-
ference, this paper extends the approach presented in [3] by
introducing mode-based weights for the regularisation ma-
trix, increasing the control effort for primary BPMs on long
straights. The performance of the FOFB is then reassessed,
considering both disturbance and a new measurement noise
model.

DISTURBANCE

The Diamond-II disturbance data presented in Ref. [6] has
been extended from 1 kHz to 2.44 kHz. The data includes
power spectral density (PSD) estimates of ground and girder
vibrations, RF and power supply noise, and is scaled using
the local beta function to obtain the disturbance profile at
each BPM, such as shown in Fig. 1 for the upstream primary
BPM of the first standard straight, which is comparable to
primary BPMs in other straight.

Note that the PSDs from Fig. 1 lack phase information,
which complicates the analysis of the MIMO system. Since
the ORMs are ill-conditioned, most of the measured distur-
bance is concentrated in the modes associated with large
singular values of the ORMs. However, this is not reflected
in the PSDs from Fig. 1, and therefore impacts the perfor-
mance estimation of the MIMO system.
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Figure 1: Estimated power spectral densitiy (PSD) of the
uncorrected horizontal and vertical disturbance for Diamond-
II at primary BPMs on long straights (LS), standard straights
(SS), and mid straights (MS). The values are averaged over
upstream and downstream BPMs.
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Figure 2: Power spectral densitiy (PSD) obtained from the
Diamond-II measurement noise model.

MEASUREMENT NOISE
The FOFB at Diamond-II will also use new BPMs [7],

and this reassessment includes a new measurement noise
model. The PSD of the measurement noise is assumed to
be 𝑁 (𝜔) := 𝛼2/𝜔2 + 𝛽2, where 𝛼 := 0.5 nm/

√
Hz and

𝛽 := 2 nm/
√

Hz are chosen based on the BPM specifications
for Diamond-II. Figure 2 shows the resulting PSD, which is
used for both horizontal and vertical directions. Comparing
with Fig. 1, the PSD of the measurement noise is several
orders of magnitude lower than the PSD of the disturbance
for frequencies below 100 Hz, of similar magnitude between
100 Hz and 1 kHz, and represents a significant contribution
from 1 kHz on.

CONTROLLER
The electron beam dynamics at Diamond-II are

𝑦(𝑠) = 𝑅s𝑔s (𝑠)𝑢s (𝑠) + 𝑅f𝑔f (𝑠)𝑢f (𝑠) + 𝑑 (𝑠), (1)

where the 𝑠 is the Laplace variable and the subscripts s and
f refer to slow and fast. The vectors 𝑦(𝑠), 𝑢 ( ·) (𝑠) and 𝑑 (𝑠)
represent the beam position, the corrector inputs, and the
disturbances, respectively, and the matrices 𝑅s ∈ R𝑛𝑦×𝑛s

and 𝑅f ∈ R𝑛𝑦×𝑛f with 𝑛𝑦 = 𝑛s = 252 and 𝑛f = 144 the
ORMs for the slow and fast correctors, which are obtained
from selecting the corresponding columns of a larger ORM
𝑅 ∈ R𝑛𝑦×(𝑛s+𝑛f ) . The scalar transfer functions 𝑔s (𝑠) and
𝑔f (𝑠) model the temporal dynamics of the correctors, and
include the frequency responses of the DAC, ADC, signal
processing filters, power supplies, magnets, and copper ves-
sel for slow correctors and stainless steel and copper vessel
for fast correctors.

The IMC structure used for Diamond-II is shown
in Fig. 3, where 𝑃(𝑠) := [𝑅s𝑔s (𝑠) 𝑅f𝑔f (𝑠)] is the
plant, 𝑃̄(𝑠) := [𝑅̄s𝑔̄s (𝑠) 𝑅̄f 𝑔̄f (𝑠)] the plant model,
𝑄(𝑠) := diag(𝑄s (𝑠), 𝑄f (𝑠)) the IMC filter, 𝑢(𝑠) :=
[𝑢s (𝑠)T 𝑢f (𝑠)T]T, and 𝑛(𝑠) is the measurement noise. Note
that 𝑛(𝑠) affects 𝑦(𝑠) when the control loop is closed, i.e.
when 𝑢s(𝑠) and 𝑢f (𝑠) in Eq. (1) are replaced with a control
law that uses the measured position 𝑦(𝑠) + 𝑛(𝑠).

The IMC filters invert the plant and are defined as
𝑄 ( ·) (𝑠) := 𝑃

†
(·) (𝑠)𝑇( ·) (𝑠), (·) = {s, f}, where it is assumed

that 𝑃̄(𝑠) = 𝑃(𝑠) and 𝑇( ·) (𝑠) are tunable transfer func-
tions designed in the companion paper [8]. The matrix
Υ ∈ R(𝑛s+𝑛f )×𝑛𝑦 is used to accommodate systems with fewer
slow than fast correctors, and the matrix Γ ∈ R𝑛𝑦×𝑛𝑦 is the
regularisation matrix that is defined as

Γ := (𝑅𝑅T + 𝜇𝐼)91𝑅𝑅T

= 𝑈 diag

(
𝜎2

1

𝜎2
1 + 𝜇

, . . . ,
𝜎2
𝑛𝑦

𝜎2
𝑛𝑦

+ 𝜇

)
𝑈T (2)

where 𝜇 ≥ 0.1 the regularisation parameter and the SVD
𝑅 = 𝑈Σ𝑉T was substituted for 𝑅. Given 𝑇( ·) (𝑠), the choice
of 𝜇 influences both closed-loop bandwidth and corrector
demand. A large value of 𝜇 (𝜇 ≫ 𝜎𝑛𝑦

) reduces both closed-
loop bandwidth and corrector demand, but a small value
of 𝜇 can yield large corrector inputs and even an unstable
closed-loop [9]. The choice 𝜇 = 0.1 results in a maximum
fast corrector demand of 276 mA, which is below the limit
of 920 mA [2].

MODE-BY-MODE REGULARISATION
As for Diamond, the Diamond-II ORMs are ill-

conditioned, i.e. the ratio of largest to smallest singular
value is large. Because the IMC filters invert the plant, the
corrector inputs are proportional to 𝑅

†
(·) , producing large

corrector inputs for disturbances in the direction of standard
singular vectors associated with small singular values of
𝑅
†
(·) . While the regularisation matrix Γ is used to reduce the
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Table 2: Targets and expected IBMs up to 1 kHz for Diamond-II at primary BPMs on long straights (LS), mid straights
(MS), and standard straights (SS). The values are averaged over upstream and downstream BPMs.

Noise 𝝁𝒊
Horizontal IBM (µm) Vertical IBM (µm)

LS MS SS LS MS SS
Target 1.20 0.90 0.97 0.23 0.14 0.18

FOFB OFF No 0.68 0.46 0.61 0.25 0.20 0.21
Upper bound from Eq. (6) No 0.1 0.48 0.23 0.35 0.25 0.09 0.12
Simulation No 0.1 0.17 0.06 0.08 0.17 0.05 0.07
Upper bound from Eq. (6) No 𝑓 (𝜃𝑖) 0.48 0.23 0.35 0.26 0.09 0.12
Simulation No 𝑓 (𝜃𝑖) 0.17 0.06 0.08 0.17 0.05 0.07

FOFB OFF Yes 0.69 0.47 0.61 0.26 0.21 0.22
Upper bound from Eq. (6) Yes 0.1 0.50 0.26 0.38 0.26 0.12 0.14
Simulation Yes 0.1 0.18 0.08 0.09 0.18 0.07 0.09
Upper bound from Eq. (6) Yes 𝑓 (𝜃𝑖) 0.50 0.26 0.38 0.26 0.12 0.15
Simulation Yes 𝑓 (𝜃𝑖) 0.18 0.08 0.09 0.18 0.07 0.09

Υ Q(s) P(s) y(s)

d(s)

P̄(s)

Γ

n(s)

Plant

Model

u(s)

+

−

+

+−
+ +

Controller

Figure 3: IMC structure with corrector setpoints 𝑢(𝑠), distur-
bances 𝑑 (𝑠), beam positions 𝑦(𝑠), and measurement noise
𝑛(𝑠).

corrector inputs, it also reduces the overall bandwidth and
therefore the performance at primary BPMs. To improve the
performance at primary BPMs, Γ from Eq. (2) is redefined
as

Γ := 𝑈 diag

(
𝜎2

1

𝜎2
1 + 𝜇1

, . . . ,
𝜎2
𝑛𝑦

𝜎2
𝑛𝑦

+ 𝜇𝑛𝑦

)
𝑈T, (3)

where 𝜇1, . . . , 𝜇𝑛𝑦
≥ 0 are mode-based regularisation pa-

rameters. The mode-based regularisation parameters are
defined as 𝜇𝑖 = 𝑓 (𝜃𝑖) with

𝜇𝑖 :=
𝜇max − 𝜇min
𝜃max − 𝜃min

(𝜃𝑖 − 𝜃min) + 𝜇min, (4)

where 𝜇min := 0.01 ≤ 𝜇𝑖 ≤ 𝜇max := 0.1, 𝜃min := min𝑖 𝜃𝑖 ,
𝜃max := max𝑖 𝜃𝑖 , and

𝜃𝑖 := acos
(
|𝑤T𝑈𝑖 |/∥𝑤∥2

)
. (5)

The variable 𝜃𝑖 describes the acute angle between 𝑈𝑖 , the
𝑖th left singular vector of 𝑅, and a vector 𝑤 ∈ R𝑛𝑦 with ones
at indices of interest and zeroes otherwise. For example, to
prioritise primary BPMs, 𝑤 can be assigned ones at indices
corresponding to primary BPMs, lowering the value of 𝜇𝑖

for modes that form a small angle with 𝑤 and hence increas-
ing the controller gain for these modes. For the following
analysis, all primary BPMs are prioritised using Eq. (4), and
these results are compared against a regularisation matrix
with 𝜇𝑖 = 0.1 for all modes.

In general, large controller gains will result in a high
closed-loop bandwidth, whereas small controller gains will
result in a low closed-loop bandwidth. Although the regular-
isation matrix limits the corrector setpoints, it also reduces
the bandwidth for modes associated with small singular val-
ues, and therefore the overall controller performance. How-
ever, if most of the disturbance is concentrated in modes
associated with large singular values, the regularisation ma-
trix does not significantly impact the controller performance,
such as it is the case for Diamond. Note that this is not the
case for the disturbance data from Fig. 1, which lacks phase
information.

RESULTS AND DISCUSSION
Because the PSDs from Fig. 1 lack phase information, the

performance of the controller is estimated using two different
methods. First, assuming that the measurement noise PSD
𝑁𝑖 (𝜔) and the disturbance PSD 𝐷𝑖 (𝜔) are uncorrelated, the
PSD 𝑌𝑖 (𝜔) of BPM 𝑖 can be upper-bounded by

𝑌𝑖 (𝜔) ≤ 𝑌𝑖 (𝜔) |𝐷 + 𝑌𝑖 (𝜔) |𝑁 , (6)

where

𝑌𝑖 (𝜔) |𝐷 :=

(
𝑛𝑦∑︁
𝑘=1

|𝑆𝑖𝑘 (j𝜔) |
√︁
𝐷𝑘 (𝜔)

)2

𝑌𝑖 (𝜔) |𝑁 :=

(
𝑛𝑦∑︁
𝑘=1

|𝐼 − 𝑆𝑖𝑘 (j𝜔) |
√︁
𝑁𝑘 (𝜔)

)2

and 𝑆𝑖𝑘 (j𝜔) refers to element on row 𝑖 and column 𝑘 of the
sensitivity, i.e. the transfer functions from disturbance and
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noise to the output, which is defined as

𝑆(𝑠) := 𝐼 − 𝑃(𝑠)𝑄(𝑠)Υ(𝐼 + (Γ − 𝐼)𝑃(𝑠)𝑄(𝑠)Υ)91Γ. (7)

Second, the PSDs from Fig. 1 can be used to sample a
time series for each BPM by adding a random phase, and the
time series can be used in simulations. Although the result-
ing performance does not represent a strict upper bound, the
results can be interpreted as a worst-case scenario. Because
the Diamond-II disturbance does not reflect the character-
istic distribution in modal space, the regularisation matrix
significantly reduces the overall performance.

The integrated beam motions (IBMs) up to 1 kHz obtained
from the upper bound using Eq. (6) and the simulations for
𝜇𝑖 = 𝑓 (𝜃𝑖) and 𝜇𝑖 = 0.1 are summarised in Table 2, which
also shows the corresponding beam stability target. The first
part of the table shows the performance without noise, so
that FOFB OFF corresponds to the IBM of the disturbance.
For both choices of 𝜇𝑖 , the simulation yields significantly
better results than the upper bound from Eq. (6). Except for
the long straights in the vertical direction, the upper bound is
below target, suggesting that the Diamond-II stability specifi-
cations are met. Although the primary BPMs are prioritised,
the choice 𝜇𝑖 = 𝑓 (𝜃𝑖) does not improve the performance,
but increases the upper bound from Eq. (6), and leaves the
simulation results unchanged. On one hand, this is related to
the lack of phase information for the disturbance data from
Fig. 1. On the other, these results suggest that decreasing 𝜇𝑖
below 𝜇max does not significantly affect the regularisation
gains from Eq. (3) and the closed-loop bandwidth, i.e. both
𝜇max and 𝜇min in Eq. (4) would need to be lowered further to
yield a performance increase on primary BPMs. However,
this would also increase the corrector demand above the
Diamond-II limit of 920 mA.

The second half of Table 2 shows the performance in the
presence of measurement noise, so that FOFB OFF corre-
sponds to the IBM obtained after adding 𝐷 (𝜔) and 𝑁 (𝜔).
Compared to the case without noise, the IBM for FOFB
OFF is ∼ 0.01 µm larger. As for the case without noise, the
simulations yield significantly better results than the upper
bound from Eq. (6), and the different choices of 𝜇𝑖 do not
impact the performance. Except for the long straights that
are 0.03 µm above target in the vertical direction, the upper
bounds from Eq. (6) is within target.

CONCLUSION
With the aim of improving the FOFB performance at pri-

mary BPMs, a new regularisation matrix was defined using
mode-by-mode regularisation parameters. The regularisa-
tion parameters were reduced for those modes that impact
the primary BPMs most. The performance of the resulting
controller was evaluated using a conservative upper bound
and in simulations, and compared against a controller that
uses a constant regularisation parameter. Two scenarios were
considered, one with measurement noise and disturbance,

and one with disturbance only. The measurement noise was
modelled based on the specifications for the new Diamond-II
electron BPMs.

The simulation results have shown that the Diamond-II
specifications are met on all straights for both scenarios,
whereas with the upper bound, the IBM on long straights
is 0.03 µm above target. For both simulations and upper
bounds, the new mode-by-mode regularisation matrix has
not led to any performance improvements. It remains unclear
why, but it is suspected that the lack of phase information for
the Diamond-II disturbance data impacts the regularisation
and the resulting performance.

On-going work at Diamond is reassessing the slow and
fast corrector demand using the new disturbance data and
the new measurement model. In addition, the fast corrector
models will be updated once they are prototyped.

Future research could analyse the impact of the regular-
isation matrix in more detail, e.g. by considering a robust
performance criteria in modal space and or by modifying the
controller dynamics in generalised modal space. In addition,
the results could be reassessed using disturbance data that
reflects the characteristic modal distribution.
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