Author: Senes, E.
Paper Title Page
MO3I02
Dielectric Pick-Up for Short Bunches  
 
  • E. Senes, T. Lefèvre
    CERN, Meyrin, Switzerland
 
  Novel acceleration schemes pose new challenges to the beam instrumentation required. This contribution presents a novel device to measure the beam position, enabling the discrimination of different co-propagating beams. The method leverages the characteristic properties of the Coherent Cherenkov-Diffraction Radiation (ChDR) emitted from dielectric inserts in the beampipe. The beam discrimination is performed in the frequency domain, exploiting the bunch length difference of the two beams. This device was developed for the AWAKE experiment, where not only an electron beam co-propagates with a more intense proton beam, but also traditional pickups are impacted by the environment polluted with spurious charges from the plasma. The electron beam discrimination takes place in a narrow band around 30 GHz. The overall design and results from the AWAKE experiment are presented. The utilisation of coherent ChDR to distinguish different co-propagating beams is a substantial novelty in the field, pushing the instruments capabilities for novel accelerating technologies, such as plasma-based accelerators.  
slides icon Slides MO3I02 [8.860 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP022 Characterisation of Cherenkov Diffraction Radiation Using Electro-Optical Methods 226
 
  • A. Schlögelhofer, T. Lefèvre, S. Mazzoni, E. Senes
    CERN, Meyrin, Switzerland
  • L. Duvillaret
    KAPTEOS, Sainte-Helene-du-Lac, France
  • A. Schlögelhofer
    TU Vienna, Wien, Austria
 
  The properties of Cherenkov diffraction radiation (ChDR) have been studied extensively during the recent years to be exploited for non-invasive beam diagnostic devices for short bunches. The dependence of charge and the influence of the bunch form factor on the coherent part of the radiated spectrum have been demonstrated and studied in the past. However, the actual field strength of coherent ChDR as well as its study in time domain need further investigation. In this contribution we are using electro-optical techniques to investigate and quantify these parameters. The electro-optical read-out brings the advantage of high bandwidth acquisition and insensitivity to electromagnetic interference, whereas at the same time a large fraction of the acquisition setup can be installed and operated outside of the radiation controlled areas. We will present experimental results from the CLEAR facility at CERN as well as simulations of the peak field of the temporal profile of beam-generated ChDR pulses.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP022  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 11 September 2023 — Issue date ※ 13 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023 Application of a Camera Array for the Upgrade of the AWAKE Spectrometer 230
 
  • E. Senes, S. Mazzoni, M. Turner, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • D.A. Cooke, F.E. Pannell, M. Wing
    UCL, London, United Kingdom
 
  The first run of the AWAKE experiment successfully demonstrated the acceleration of an electron beam in the plasma wakefields of a relativistic proton beam. The planned second run will focus on the control of the emittance  of accelerated electrons, requiring an upgrade of the  existing spectrometer. Preliminary measurements showed that this might be achieved by improving the resolution of the scintillator and with a new design of the optical system. This contribution discusses the application of a digital camera array in close proximity of the spectrometer scintillator, to enable the accelerated electron beam emittance measurement.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP023  
About • Received ※ 05 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 24 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)