Author: Schlarb, H.
Paper Title Page
MOP039 Transverse Multi-Bunch Feedback Detector Electronics Using Direct Sampling Analog-to-Digital Converters for the Synchrotron Radiation Source PETRA IV 115
 
  • S. Jabłoński, H.T. Duhme, U. Mavrič, S. Pfeiffer, H. Schlarb
    DESY, Hamburg, Germany
 
  PETRA IV, a new fourth generation synchrotron radiation source planned at DESY, will require a transverse multi-bunch feedback (T-MBFB) system to damp transverse instabilities and keep the beam emittance low. The critical part of the T-MBFB is a detector that must measure bunch-by-bunch, i.e. every 2 ns, beam position variations with the resolution not worse than 1 ¿m for the dynamic beam range of ±1 mm. In this paper, we present the conceptual design of the T-MBFB detector from the beam position pickups to the direct sampling ADCs. We analyse the noise sources limiting the detector resolution and present measurement results based on the evaluation modules.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP039  
About • Received ※ 01 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP012 First Measurements of an Electro-Optical Bunch Arrival-Time Monitor Prototype with PCB-Based Pickups for ELBE 214
 
  • B.E.J. Scheible, A. Penirschke
    THM, Friedberg, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, T.A. Nazer, H. Schlarb, S. Vilcins
    DESY, Hamburg, Germany
  • M. Freitag, M. Kuntzsch
    HZDR, Dresden, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under Contract No. 05K19RO1 and 05K22RO2.
A vacuum sealed prototype of an electro-optical bunch-arrival-time monitor has been commissioned in 2023. It comprises of a pickup-structure and a low-pi-voltage ultra-wideband traveling wave electro-optical modulator. The stainless-steel body of the pickup structure is partially produced by additive manufacturing and comprises four pickups as well as an integrated combination network on a printed circuit board. This novel design aims to enable single-shot bunch-arrival-time measurements for electron beams in free-electron lasers with single-digit fs precision for low bunch charges down to 1 pC. The theoretical jitter charge product has been estimated by simulation and modeling to be in the order of 9 fs pC. The new prototype is tailored for validation experiments at the ELBE accelerator beamline. In this contribution first measurement results are presented.
 
poster icon Poster TUP012 [2.469 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP012  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)