Author: De Gersem, H.
Paper Title Page
TUP011 Geometry Study of an RF-Window for a GHz Transition Radiation Monitor for Longitudinal Bunch Shape Measurements 209
 
  • S. Klaproth, A. Penirschke
    THM, Friedberg, Germany
  • H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • R. Singh
    GSI, Darmstadt, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)
GHz transition radiation monitors (GTRs) can be used to measure longitudinal beam profiles even for low ß beams. In comparison to traditional methods e.g., Fast Faraday Cups (FFCs) and Feschenko monitors, GTRs are a non-destructive measurement method and are able to resolve bunch-by-bunch longitudinal profiles at the same time. In our case, we plan to measure the transition radiation outside the beam line through an RF-window with an 8 GHz broad band antenna. At the border of the RF-window the transition radiation is partially reflected propagating in the beam line backwards. In this contribution, we show a study of different geometries to suppress reflections generated at the transition to the RF-window. For higher permittivity the strength of these reflections becomes stronger, simultaneously reducing the measurable signal strength at the antenna. Secondly the RF-window material must be UHV usable and should be durable like Alumina or Peek.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP011  
About • Received ※ 25 September 2023 — Revised ※ 29 September 2023 — Accepted ※ 30 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP012 First Measurements of an Electro-Optical Bunch Arrival-Time Monitor Prototype with PCB-Based Pickups for ELBE 214
 
  • B.E.J. Scheible, A. Penirschke
    THM, Friedberg, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, T.A. Nazer, H. Schlarb, S. Vilcins
    DESY, Hamburg, Germany
  • M. Freitag, M. Kuntzsch
    HZDR, Dresden, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under Contract No. 05K19RO1 and 05K22RO2.
A vacuum sealed prototype of an electro-optical bunch-arrival-time monitor has been commissioned in 2023. It comprises of a pickup-structure and a low-pi-voltage ultra-wideband traveling wave electro-optical modulator. The stainless-steel body of the pickup structure is partially produced by additive manufacturing and comprises four pickups as well as an integrated combination network on a printed circuit board. This novel design aims to enable single-shot bunch-arrival-time measurements for electron beams in free-electron lasers with single-digit fs precision for low bunch charges down to 1 pC. The theoretical jitter charge product has been estimated by simulation and modeling to be in the order of 9 fs pC. The new prototype is tailored for validation experiments at the ELBE accelerator beamline. In this contribution first measurement results are presented.
 
poster icon Poster TUP012 [2.469 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP012  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)