JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUP005: Commissioning the Beam-Loss Monitoring System of the LCLS Superconducting Linac

@inproceedings{fisher:ibic2023-tup005,
  author       = {A.S. Fisher and N. Balakrishnan and G.W. Brown and E.P. Chin and W.G. Cobau and J.E. Dusatko and B.T. Jacobson and S. Kwon and J.A. Mock and J. Park and J. Pigula and E. Rodriguez and J.I.D. Rudolph and D. Sanchez and L. Sapozhnikov and J.J. Welch},
% author       = {A.S. Fisher and N. Balakrishnan and G.W. Brown and E.P. Chin and W.G. Cobau and J.E. Dusatko and others},
% author       = {A.S. Fisher and others},
  title        = {{Commissioning the Beam-Loss Monitoring System of the LCLS Superconducting Linac}},
% booktitle    = {Proc. IBIC'23},
  booktitle    = {Proc. 12th Int. Beam Instrum. Conf. (IBIC'23)},
  eventdate    = {2023-09-10/2023-09-14},
  pages        = {187--190},
  paper        = {TUP005},
  language     = {english},
  keywords     = {linac, gun, cryomodule, MMI, radiation},
  venue        = {Saskatoon, Canada},
  series       = {International Beam Instrumentation Conference},
  number       = {12},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {12},
  year         = {2023},
  issn         = {2673-5350},
  isbn         = {978-3-95450-236-3},
  doi          = {10.18429/JACoW-IBIC2023-TUP005},
  url          = {https://jacow.org/ibic2023/papers/tup005.pdf},
  abstract     = {{A 4-GeV superconducting linac has been added to the LCLS x-ray FEL facility at SLAC. Its 120-kW, 1-MHz beam requires new beam-loss monitors (BLMs) for radiation protection, machine protection, and diagnostics. Long radiation-hard optical fibres span the full 4 km from the electron gun of the SC linac to the final beam dump. Diamond detectors at anticipated loss points provide local protection. Detector signals are continuously integrated with a 500-ms time constant and compared to a loss threshold. If crossed, the beam is halted within 0.1 ms. Commissioning began in March 2022 with the 100-MeV injector and with RF processing of the cryomodules. At IBIC 2022 last September, we presented commissioning results from the injector BLMs. In October, the beam passed through the full linac and the bypass transport line above the LCLS copper linac, stopping at an intermediate dump. In August it continued through the soft x-ray undulator and achieved first lasing. Here we present BLM commissioning at energies up to 4 GeV and rates up to 100 kHz. We discuss measurements and software using the fast diagnostic-waveform output to localize beam losses and to detect wire-scanner signals.}},
}