Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics

P. Boutachkov (GSI)

TPOLYTECH

 \ominus Shvabe

Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics

P. Boutachkov (GSI)

POLYTECH \ominus Shvabe

SCI detectors at GSI

- ZnO scintillator development
- ZnO for detection of relativistic ions

Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics					
P. Boutachkov (GSI)					
GSÏ	FAIR	TECHNISCHE UNIVERSITÄT DARMSTADT	I POLYTECH	\ominus Shvabe	ERA.Net RUS Plus
SCI detectors at GSI				www.gsi.de	SIS100 and SIS300
ZnO scintillator development					
ZnO for o	detectio	on of relati	vistic ions	100 m	²³⁸ U ²⁸⁺ , 2.7 GeV/u

۲

۲

۲

Intensity and micro-spill detector

BC400(EJ212)

75x80x1 mm³

Intensity and micro-spill detector

BC400(EJ212)

75x80x1 mm³

IBIC 2022

P. Boutachkov (GSI)

Intensity and micro-spill detector

BC400(EJ212)

 $75 \times 80 \times 1 \text{ mm}^3$

P. Boutachkov (GSI)

For example see: J. Yang et. al. TUP36

Combine info from SCI and BPM

^{R. Singh} 10⁷ pps U²⁸⁺ \rightarrow 50 µV on the BPM plates \rightarrow 0.1 mm resolution

For example see: J. Yang et. al. TUP36

Combine info from SCI and BPM

^{R. Singh} 10⁷ pps U²⁸⁺ \rightarrow 50 µV on the BPM plates \rightarrow 0.1 mm resolution

Positive

- No calibration is needed (each particle is counted)
- DC coupled
- Large dynamic range:

Operation over 5 decades, detects ${\boldsymbol{p}}$ to ${\boldsymbol{U}}$

With Active Voltage Divider:

counting rate of a few $x10^7$ pps can be reached

FWHM ~ 5 ns

50 m RG214, FWHM ~ 25 ns

FWHM ~ 5 ns

50 m RG214, FWHM ~ 25 ns

Many solutions: e.g. S.E. Engel et. al. WEP42 (best options FWHM < 1 ns)

IBIC 2022

FWHM ~ 5 ns

50 m RG214, FWHM ~ 25 ns

Many solutions: e.g. S.E. Engel et. al. WEP42 (best options FWHM < 1 ns)

Problematic

Radiation Damage

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics, 1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the_time constants of their probably exponential decay are **at most 10**⁻⁹ **sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics, 1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the_time constants of their probably exponential decay are **at most 10**⁻⁹ **sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

n-type doped = add 0.3 mol % Ga or 0.1 mol % In

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics, 1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the_time constants of their probably exponential decay are **at most 10**⁻⁹ **sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

n-type doped = add 0.3 mol % Ga or 0.1 mol % In reducing conditions = $ZnO + H_2 \rightarrow H_2O + Zn$ (at 700°C)

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics, 1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the_time constants of their probably exponential decay are **at most 10**⁻⁹ **sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

n-type doped = add 0.3 mol % Ga or 0.1 mol % In

reducing conditions = $ZnO + H_2 \rightarrow H_2O + Zn$ (at 700° C)

From the paper: The phosphors can then be excited by any common means (**e.g. u.v. or cathodo-rays**) to show edge emission (**near-u.v. for ZnO**) while the ordinarily observed longer-wave emissions (**green for ZnO**) are absent.

ZnO Applications

- X-ray detector
- α-detectors
- γ-detectors
- Nano-structures
 - Gas sensors
 - SE detectors
- Transparent electrodes
- LED

• • •

ZnO Applications

- X-ray detector
- α-detectors
- y-detectors
- Nano-structures
 - Gas sensors
 - SE detectors
- Transparent electrodes

LED

P.A. Rodnyi, et. al. "Novel Scintilation Material ZnO Transparent Ceramics" IEEE 59 (2012) 2152

Fig. 6. Pulse height spectra of 137 Cs, obtained for (1) ZnO ceramics and (2) CsI:Tl single crystalline scintillators.

P. Boutachkov (GSI)

. . .

IBIC 2022

ZnO Transparent Ceramics

diameter = 2 cm thickness = 0.4 mm

The receipt

- Mix ZnO nano-powder with In₂O₃
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H₂

ZnO Transparent Ceramics

diameter = 2 cm thickness = 0.4 mm

The receipt

- Mix ZnO nano-powder with In₂O₃
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H₂

ZnO Transparent Ceramics

diameter = 2 cm thickness = 0.4 mm

The receipt

- Mix ZnO nano-powder with In₂O₃
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H₂

E. Gorokhova (State Optical Institute Scientific Production Enterprise, St. Petersburg, Russia)

P.A. Rodnyi (Peter the Great St. Petersburg Polytechnic University)

L. Grigorjeva (Institute of Solid State Physics of University of Latvia)

P. Boutachkov (GSI)

Boutachkov,

<u>M. Saifulin,</u>

- B. Walasek-Höhne,
- C. Trautmann,
- P. Forck
- (GSI, Germany)

Ar-U @ 250 – 500 MeV/u Ca, Au @ 5 MeV/u, 8 MeV/u

Experiments at GSI

Ar-U @ 250 – 500 MeV/u Ca, Au @ 5 MeV/u, 8 MeV/u

- (1) SIS-18 beam line;
- (2) Beam collimator;
- (3) Ionization chamber;
- (4) Photomultipliers;
- (5) Video camera;
- (6) Target holder;
- (7) Spectrometers;

<u>M. Saifulin</u> P. Boutachkov (GSI)

Luminescence

Luminescence

M. Saifulin, et. al., Journal of Applied Physics (see poster TUP29 for more details)

GSI-SD

IBIC 2022

P. Boutachkov, et. al., JACoW IBIC2019

Figure 3: Comparison of the amplitude distribution of the investigated materials. The scintillators are bombarded with 300 MeV/u ¹²⁴Xe. In red: 1 mm thick BC400, in blue: 0.4 mm thick ZnO:In and in black 0.4 mm thick ZnO:Ga.

FWHM(ZnO) > FWHM(BC400)

IBIC 2022

Luminescence

P. Boutachkov, et. al., JACoW IBIC2019

Figure 3: Comparison of the amplitude distribution of the investigated materials. The scintillators are bombarded with 300 MeV/u ¹²⁴Xe. In red: 1 mm thick BC400, in blue: 0.4 mm thick ZnO:In and in black 0.4 mm thick ZnO:Ga.

FWHM(ZnO) > FWHM(BC400)

IBIC 2022

M. Saifulin, et. al., to be published in IEEE

How Fast is ZnO?

²³⁸U@300 MeV/u interacting with BC400 and ZnO:In

M. Saifulin, et. al. IBIC2020

How Fast is ZnO?

²³⁸U@300 MeV/u interacting with BC400 and ZnO:In

H13661-PMT(PMT rise time ~ 230 ps, PMT FWHM 430 ps) signal captured with 2 GHz scope

IBIC 2022

How Fast is ZnO?

²³⁸U@300 MeV/u interacting with BC400 and ZnO:In

M. Saifulin, et. al. IBIC2020

H13661-PMT(PMT rise time ~ 230 ps, PMT FWHM 430 ps) signal captured with 2 GHz scope

IBIC 2022

P. Boutachkov, et. al., JACoW IBIC2019

IBIC 2022

P. Boutachkov (GSI)

after ²³⁸U irradiation air annealing 500°C, 30 min 8 RL intensity (a.u.) 4 300 400 500 600 Wavelength (nm) Radioluminecence spectra: 1 – initial sample; 2 – after irradiation with ²³⁸U ; 3 – after annealing, Figure from: P.A. Rodnyi *et al.*, IEEE EExPolytech, October 17-18, 2019

GSI-SD

Birks-Black model and ZnO

M. Saifulin, et. al., Journal of Applied Physics (see poster TUP29 for more details)

Ca, Au @ 5 MeV/u

IBIC 2022

Birks-Black model and ZnO

M. Saifulin, et. al., Journal of Applied Physics (see poster TUP29 for more details)

Ca, Au @ 5 MeV/u

J. B. Birks and F. A. Black 1951 Proc. Phys. Soc. A 64 511 $I(\phi) = I_0 / (1 + \phi / \phi_{1/2})$

Birks-Black model and ZnO

IBIC 2022

P. Boutachkov (GSI)

ZnO Transmition

⁴⁸Ca @4.8MeV/u, ZnO:In luminescence and transmittance

M. Saifulin, et. al., Journal of Applied Physics

ZnO Transmition

⁴⁸Ca @4.8MeV/u, ZnO:In luminescence and transmittance

ZnO Transmition

Elecron Micrograph of ZnO sample

E. I. Gorokhova et. al. Journal of Optical Technology, 85 (2018) p. 729

Building a tile detector

<u>ZnO:In</u>

- 15x15 mm² tiles, 0.4 mm thick
- Active area 45mm x 45mm

M. Saifulin, et. al., SCINT 2022, M. Saifulin, TU Darmstadt Thesis

M. Saifulin, et. al., SCINT 2022, M. Saifulin, TU Darmstadt Thesis

Prototype counting efficiency map

Characterized with 300 MeV/u: Ar, Au, Pb, U

IBIC 2022

Prototype counting efficiency map

Characterized with 300 MeV/u: Ar, Au, Pb, U

Summary

- ZnO:In ceramics
 - Fast
 - Radiation hard
 - Annealing \rightarrow restore of lumin.
- Material response to relativistic heavy ions was determined
- Development of 45x45 mm² ZnO:In"compact detector"

R.H MIPs detector

Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10^9$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

R.H MIPs detector

Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10^9$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

Preliminary: LY(ZnO:In, 0.4 mm) ~ $10 \times LY(Al_2O_3:Cr)$

Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10^9$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

Preliminary: LY(ZnO:In, 0.4 mm) ~ $10 \times LY(Al_2O_3:Cr)$

P. Boutachkov¹, M. Saifulin^{1,2}, E. Gorokhova³, P. Rodnyi⁴, I. Venevtsev⁴, C. Trautmann^{1,2}, and B. Walasek-Höhne²

¹ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

- ² Technische Universität Darmstadt, Darmstadt, Germany
- ³ "Research and Production Corporation S.I. Vavilova", St. Petersburg, Russia
- ⁴ Peter the Great Polytechnic University, St. Petersburg, Russia

