Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics

P. Boutachkov (GSI)

 \bigcap POLYTECH \bigoplus Shvabe

Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics

P. Boutachkov (GSI)

 \bigcap POLYTECH \bigoplus Shvabe

• SCI detectors at GSI

- ZnO scintillator development
- ZnO for detection of relativistic ions

Intensity and micro-spill detector

BC400(EJ212)

75x80x1 mm³

Intensity and micro-spill detector

BC400(EJ212)

75x80x1 mm³

IBIC 2022 P. Boutachkov (GSI)

Intensity and micro-spill detector

BC400(EJ212)

75x80x1 mm³

For example see: J. Yang et. al. TUP36

• Combine info from SCI and BPM

R. Singh

 10^7 pps U^{28+} \rightarrow 50 µV on the BPM plates \rightarrow 0.1 mm resolution

For example see: J. Yang et. al. TUP36

• Combine info from SCI and BPM

R. Singh

 10^7 pps U^{28+} \rightarrow 50 µV on the BPM plates \rightarrow 0.1 mm resolution

Positive

- No calibration is needed (each particle is counted)
- DC coupled
- Large dynamic range:

Operation over 5 decades, detects **p** to **U**

• With Active Voltage Divider:

counting rate of a few x10⁷ pps can be reached

 $FWHM \sim 5$ ns

50 m RG214, $FWHM \sim 25$ ns

$FWHM \sim 5$ ns

50 m RG214, $FWHM \sim 25$ ns

Many solutions: e.g. S.E. Engel et. al. WEP42 (best options $FWHM < 1$ ns)

 $FWHM \sim 5$ ns

50 m RG214, $FWHM \sim 25$ ns

Many solutions: e.g. S.E. Engel et. al. WEP42 (best options $FWHM < 1$ ns)

Problematic

Radiation Damage

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics,1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the time constants of their probably exponential decay are **at most 10 -9 sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics,1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the time constants of their probably exponential decay are **at most 10 -9 sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

n-type doped = add 0.3 mol % Ga or 0.1 mol % In

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics,1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the time constants of their probably exponential decay are **at most 10 -9 sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

> **n-type doped** $=$ add 0.3 mol % Ga or 0.1 mol % In **reducing conditions** = $ZnO + H_2 \rightarrow H_2O + Zn$ (at 700° C)

W. Lehmann, "Edge emission of n-type conducting ZnO and CdS," Solid-State Electronics,1966.

Abstract: Edge emission **luminescence of ZnO** and CdS appears in useful intensity at **room temperature** if the materials are **n-type doped** and prepared under **reducing conditions**. The emission spectra consist each of a **structureless band** near to the **optical absorption edge**. The luminescences are extremely fast, the time constants of their probably exponential decay are **at most 10 -9 sec**. The emissions are assumed to be due to electron transitions from shallow states below the conduction band.

n-type doped $=$ add 0.3 mol % Ga or 0.1 mol % In

reducing conditions = $ZnO + H_2 \rightarrow H_2O + Zn$ (at 700°C)

From the paper: The phosphors can then be excited by any common means (**e.g. u.v. or cathodo-rays**) to show edge emission (**near-u.v. for ZnO**) while the ordinarily observed longer-wave emissions (**green for ZnO**) are absent.

ZnO Applications

- X-ray detector
- α-detectors
- γ-detectors
- Nano-structures
	- Gas sensors
	- SE detectors
- Transparent electrodes
- \bullet LED

…

ZnO Applications

- X-ray detector
- α-detectors
- y-detectors
- Nano-structures
	- Gas sensors
	- SE detectors
- Transparent electrodes

LED

…

P.A. Rodnyi, et. al. "Novel Scintilation Material ZnO Transparent Ceramics" IEEE 59 (2012) 2152

Fig. 6. Pulse height spectra of ^{137}Cs , obtained for (1) ZnO ceramics and (2) CsI: Tl single crystalline scintillators.

diameter = 2 cm thickness = 0.4 mm

ZnO Transparent Ceramics

The receipt

- Mix ZnO nano-powder with In_2O_3
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H_2

ZnO Transparent Ceramics

diameter = 2 cm thickness = 0.4 mm

The receipt

- Mix ZnO nano-powder with In_2O_3
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H_2

ZnO Transparent Ceramics

diameter = 2 cm thickness = 0.4 mm

The receipt

- Mix ZnO nano-powder with In_2O_3
- Use uniaxial hot pressing in high vacuum furnace
- Polish to the desired thickness
- Optionally treat with H_2

E. Gorokhova (State Optical Institute Scientific Production Enterprise, St. Petersburg, Russia)

P.A. Rodnyi (Peter the Great St. Petersburg Polytechnic University)

L. Grigorjeva (Institute of Solid State Physics of University of Latvia)

IBIC 2022 P. Boutachkov (GSI)

P. Boutachkov, M. Saifulin, B. Walasek-Höhne,

- C. Trautmann,
- P. Forck
- (GSI, Germany)

Ar-U @ **250** – **500** MeV/u **Ca, Au** @ **5** MeV/u, **8** MeV/u

Experiments at GSI

Ar-U @ **250** – **500** MeV/u **Ca, Au** @ **5** MeV/u, **8** MeV/u

- (1) SIS-18 beam line;
- (2) Beam collimator;
- (3) Ionization chamber;
- (4) Photomultipliers;
- (5) Video camera;
- (6) Target holder;
- (7) Spectrometers;

IBIC 2022 P. Boutachkov (GSI) M. Saifulin

P. Boutachkov, et. al., JACoW IBIC2019

Figure 3: Comparison of the amplitude distribution of the investigated materials. The scintillators are bombarded with 300 MeV/u 124 Xe. In red: 1 mm thick BC400, in blue: 0.4 mm thick ZnO: In and in black 0.4 mm thick ZnO: Ga.

FWHM(ZnO) > FWHM(BC400)

P. Boutachkov, et. al., JACoW IBIC2019

Figure 3: Comparison of the amplitude distribution of the investigated materials. The scintillators are bombarded with 300 MeV/u 124 Xe. In red: 1 mm thick BC400, in blue: 0.4 mm thick ZnO : In and in black 0.4 mm thick ZnO : Ga.

FWHM(ZnO) > FWHM(BC400)

M. Saifulin, et. al., to be published in IEEE

How Fast is ZnO?

[238](mailto:238U@300)[U@300](mailto:238U@300) MeV/u interacting with BC400 and ZnO:In

M. Saifulin, et. al. IBIC2020

How Fast is ZnO?

238 [U@300](mailto:238U@300) MeV/u interacting with BC400 and ZnO:In

H13661-PMT(PMT rise time \sim 230 ps, PMT FWHM 430 ps) signal captured with 2 GHz scope

How Fast is ZnO?

238 [U@300](mailto:238U@300) MeV/u interacting with BC400 and ZnO:In

M. Saifulin, et. al. IBIC2020

H13661-PMT(PMT rise time \sim 230 ps, PMT FWHM 430 ps) signal captured with 2 GHz scope

P. Boutachkov, et. al., JACoW IBIC2019

IBIC 2022 P. Boutachkov (GSI)

after 238U irradiation

after 238U irradiation

GSI-SØ)

Birks-Black model and ZnO

M. Saifulin, et. al., Journal of Applied Physics (see poster TUP29 for more details)

Ca, Au @ **5** MeV/u

Birks-Black model and ZnO

M. Saifulin, et. al., Journal of Applied Physics (see poster TUP29 for more details)

Ca, Au @ 5 MeV/u

 $I(\phi) = I_0 / (1 + \phi / \phi_{1/2})$ J. B. Birks and F. A. Black 1951 Proc. Phys. Soc. A 64 511

Birks-Black model and ZnO

IBIC 2022 P. Boutachkov (GSI)

ZnO Transmition

48Ca @4.8MeV/u, ZnO:In luminescence and transmittance

M. Saifulin, et. al., Journal of Applied Physics

ZnO Transmition

ZnO Transmition

Elecron Micrograph of ZnO sample

E. I. Gorokhova et. al. Journal of Optical Technology, 85 (2018) p. 729

Building a tile detector

ZnO:In

- **15x15 mm² tiles, 0.4 mm thick**
- **Active area 45mm x 45mm**

M. Saifulin, et. al., SCINT 2022, M. Saifulin, TU Darmstadt Thesis

M. Saifulin, et. al., SCINT 2022, M. Saifulin, TU Darmstadt Thesis

Prototype counting efficiency map

Characterized with 300 MeV/u: Ar, Au, Pb, U

Prototype counting efficiency map

Characterized with 300 MeV/u: Ar, Au, Pb, U

Summary

- ZnO:In ceramics
	- Fast
	- Radiation hard
	- Annealing \rightarrow restore of lumin.
- Material response to relativistic heavy ions was determined
- Development of 45x45 mm² ZnO:In"compact detector"

R.H MIPs detector

R.H MIPs detector Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10⁹$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

R.H MIPs detector Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10⁹$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

Preliminary: LY(ZnO:In, 0.4 mm) $\sim 10 \times LY(A_2O_3:Cr)$

R.H MIPs detector Longitudinal profile Measurements

Screen saturation Based on XFEL results: G. Kube et. al. FEL2019

One expects Al_2O_3 : Cr effects at $6x10⁹$ particles of U-ions, 10 mm beam spot.

extraction time at SIS >> ZnO:In decay time

Preliminary: LY(ZnO:In, 0.4 mm) $\sim 10 \times LY(A_2O_3:Cr)$

P. Boutachkov¹, M. Saifulin^{1,2}, E. Gorokhova³, P. Rodnyi⁴, I. Venevtsev⁴, C. Trautmann 1,2, and B. Walasek-Höhne ²

1 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

2 Technische Universität Darmstadt, Darmstadt, Germany

³ "Research and Production Corporation S.I. Vavilova". St. Petersburg. Russia

4 Peter the Great Polytechnic University, St. Petersburg, Russia

