High accuracy synchrotron radiation interferometry with relativistic electrons

A1 Collaboration and friends

P.Achenbach P.Eckert J.Geratz T. Gogami **P.Herrmann** M. Kaneta Y. Konishi W.Lauth S. Nagao S. Nakamura **J.Pochodzalla** Y. Toyama

pklag02@uni-mainz.de

Pascal Klag 14.09.2022

This project has received funding the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Energy measurement for spectrometer calibration

Do we understand the simplest Hypernucleus?

Hypertriton – still a puzzle?

- > Small BE of ${}^{3}_{\Lambda}$ H and a lifetime significantly below $\tau(\Lambda)$ were puzzling
- > Theoretical calculations incl. π FSI

Approaching era of precision and accuracy by new experiments

- MAMI A1 2022: π spectroscopy: $\Delta B \sim \pm 10 \pm 30$ keV
- JLab E12-19-002: missing mass: △B~±20±70 keV; 1⁺ state?
- ELPH: direct measurement of hypertriton lifetime (γ ,K⁺)
- J-PARC (π^-, K^0)
- HYPHI (FAIR Phase 0), ALICE, STAR

High resolution pion spectroscopy

Electroproduction of excited hypernuclei on ⁹Be Target

Event tagging by kaon detection

 π

Fragmentation produces several light hypernuclei

Mesonic weak decay and groundstate mass reconstruction by spectroscopy of pions from two-body decay

electron beam

Phys. Rev. Lett. 115, 222501 (2015)

High resolution pion spectroscopy

- Main systematic error due to uncertainty of the absolute MAMI beam energy
 - improved luminosity with Li target
 - interference of coherent undulator radiation

Method

Undulator pair

Undulator magnetic field

500mm

$\begin{array}{c} 80mm\\ \text{Undulator period} \ \lambda_{\textit{U}} \end{array}$

Emission of synchrotron radiation

- Electrons oscillate perpendicular to the z-Axis
- The black bar suggests the idea of a high relativistic antenna moving towards the observer
- Emission takes place only in a finite length

Two undulators acting as light sources

Simulated Undulator spectrum, (no Diffraction)

Example at 404 nm

12

Intensity oscillation vs Position

Energy vs Wavelength

Alignment of the undulator pair with theodolites

Accuracy of the alignment with theodolites: 100µm

Sebastian Nizan - Own work Theodolit - Model T2 manufactured by Wild, Heerbrug in the 1970th

Error to the energy due to uncertainty in the observation

Oscillation period depends on the angle θ :

$$\lambda_{Osc} = \lambda_{Osc}(\Theta)$$

The uncertainty in the angle θ , ($\delta\theta$) results in an error of the y

$$\frac{\delta \gamma}{\gamma} = \frac{1}{2} \sqrt{\left(\frac{2\gamma^2 \delta \Theta^2}{1+\gamma^2 \delta \Theta^2}\right)^2}$$

Error to the energy due to uncertainty in the observation

With the Theodolite, $\delta\theta$ could be determined to about 0.05mrad:

Simulated Undulator spectrum, (no Diffraction)

Method (including aperture)

Measured Undulator spectrum

Example cut at 404 nm

Fitted diffraction

No diffraction

Example at 404 nm

7 parameter fit 200 different wavelengths

Improvements due to regulation

Without regulation

With regulation

Exchanging horizontal and vertical direction

Reduced error to the energy

Status of the uncertainties

The uncertainties of the energy at 195MeV

statistical: <0.9keV over 900x1000 pixels

systematics: due to δθ by fitting, only σ(hori/vert): Vertical: 1 keV Horizontal: 4 keV

Horizontal means, with inserted Klag Prism

RUARD

due to $\delta\lambda$: 2.2keV

Fitting error (model uncertainty): 10-50keV

Systematic error of fit

Thank you for your attention

pklag02@uni-mainz.de

Uncertainty of the source for the horizontal dimension

Series of cuts at 404nm

σ (horizontal) = 13µm

Movement is exagerated for illustration

Steering the electron beam against the aperture [-.02,.02]mrad

MAMI beam energy is very stable (if run several days)

Doktorarbeit Philipp Herrmann

Comparison between MAMI and Undulator measurements

measurement ended

Insertion errors should <u>not</u> influence the oscillation period

Status of the uncertainties

The uncertainties of the energy at 195MeV

statistical:

<0.9keV over 900x1000 pixels

systematics:

due to $\delta\theta$ by fitting, only σ (hori/vert):

Vertical: 1 eV Horizontal: 30 eV

due to $\delta\theta$, aperture pos:

Vertical: 1.7 keV Horizontal: 3.8 keV

due to $\delta\lambda$:

2.2keV Fitting error (model uncertainty):

Horizontal means, with inserted Klag Prism₃₅

9keV

Status of the uncertainties

The uncertainties of the energy at 195MeV

statistical:

<0.9keV over 900x1000 pixels

systematics:

due to $\delta\theta$ by fitting, only σ (hori/vert):

Vertical: 1 eV Horizontal: 10 eV

due to $\delta \zeta$ by fitting:

Vertical: .08 keV Horizontal: 3.8 keV

due to δλ :

2.2keV Fitting error (model uncertainty):

Horizontal means, with inserted Klag Prism

9keV

Thank you for you attention

