International Beam Instrumentation Conference IBIC 2022 11-15 September 2022, Kraków, Poland

Angular Resolved Thomson Parabola for Laser-Plasma Accelerators

Carlos Salgado-López

csalgado@clpu.es September 13th, 2022

Contributors:

- J. I. Apiñaniz
- A. Curcio
- D. de Luis
- J. L. Henares
- J. A. Pérez-Hernández
- L. Volpe
- G. Gatti

Motivation

Most common ion acceleration scheme in LPA: Target Normal Sheath Acceleration (TNSA)

Specific beam properties

- Multi-species (mainly protons and light ions due to q/m)
- Quasi-Maxwellian spectrum with cutoff on 10s MeV
- High total divergence (20°-50°)
- Moderate charge (typically below 1 nC)
- Highly-correlated coordinate-momentum: good transversal beam quality
- Short duration (picosecond)

Applications favored by possibility of beam transport and focalization (thanks to the small transversal emittance).

- Transient phenomena (plasma) ultrashort probing
- Isochoric heating of dense plasmas
- Fast ignition in ICF
- Material science
- Radio-pharmacy/medical purposes (towards hadrontherapy)

Design

Thomson Parabola:

- Species-discrimination (different charge-to-mass ratio species) ٠
- Fine spectral resolution for extremely broadband beams •
 - Available range 0,3 25 MeV with ΔE (@20 MeV) = 1,3 MeV ٠
- Main drawback: lack of angular resolution •

Mask pinhole array = multiple traces (tomography-like measurement)

MCP Shielding Magnets **Electrical plates** Ē

Pinholes

Setup 1: small magnification, 3 pinholes

IBIC 2022

Setup 1: species identification

Carlos Salgado-López September 13th 2022

IBIC 2022

Setup 1: spectra comparison

IBIC 2022

Setup 2: higher magnification

 H^+

PW laser VEGA 3:

- E = 22 J
- τ = 240 fs
- $I_{FWHM} \approx 3 \times 10^{19} \text{ W/cm}^2$
- 6 µm Al target

L = 15 mm

Proton cone Pinholes 40° $\Delta \alpha = 2^{\circ}$

Look the beam closely means:

- Thicker traces (spatial and angular resolution, higher angular acceptance of individual pinholes) – but less spectral resolution
- Larger beam area measured
- Larger **PSF** (effect of size of pinhole)

Cⁿ⁺

Setup 3: larger magnification, scintillator, 4 pinholes

CLPU CENTRO DE LÁSERES PULSADOS

New device configuration: Within angular acceptance 4 pinholes ٠ Proton cone of beam transport optics Active detector for particles: 1,5mm-thick BC-400 plastic scintillator Light/Carbon ions shielding: 12µm-thick Pokalon film Active detector for X-rays: Lanex scintillating screen **Pinholes** Absence of carbon ions: switch off E-field Same L' 40° L' increased $\Delta \alpha = 2^{\circ}$ $\frac{1}{1} = 15$ = 25 E = 2,5 MeVE = 1,7 MeV E = 5 MeVE = 10 MeVE = 5 MeVE = 14,6 MeV E = 10 MeV E = 12,1 MeV X-ray spots

Carlos Salgado-López September 13th 2022

Raw trace thickness deconvolved with square function of pinhole aperture projection onto detector

IBIC 2022

Raw trace thickness deconvolved with square function of pinhole aperture projection onto detector

IBIC 2022

Raw trace thickness deconvolved with square function of pinhole aperture projection onto detector

IBIC 2022

Raw trace thickness deconvolved with square function of pinhole aperture projection onto detector

IBIC 2022

Setup 3: barycenter

Carlos Salgado-López September 13th 2022

Setup 3: Horizontal rms geometrical emittance

IBIC 2022

Setup 3: Full beam scan

By repositioning the detector: full angular scan was done at VEGA 3, data under analysis.

- $\theta_{\text{vertical}} = -1.8^{\circ}$ to 3° in $\Delta \theta \approx 0.5^{\circ}$ steps
- $\theta_{\text{horizontal}} = -15^{\circ} \text{ to } 15^{\circ} \text{ in } \Delta\theta \approx 2^{\circ} \text{ steps}$

Severe difference between traces/energies have been observed in some shots

Carlos Salgado-López September 13th 2022

International Beam Instrumentation Conference IBIC 2022 11-15 September 2022, Kraków, Poland

Summary

Angular Resolved Thomson Parabola for Laser-Plasma Accelerators

- Versatile instrument development and test for LPA ion beam characterization
- Angular-resolved (tomography) of Thomson-Parabola traces: energy and species differentiation
- Energy-resolved measurement of proton beam lateral trace space and emittance.
- Instantaneous and single shot, HRR compatible: statistical measurement, beam stability control ...
- Ideal candidate for beam monitor of LPA transported beams

Recent published article with technical details and first commissioning test of the device: Salgado-López, C.et al., Sensors 2022, 22, 3239. https://doi.org/10.3390/s22093239 Article under development for trace-space and emittance measurement

csalgado@clpu.es

MINISTERIO DE CIENCIA E INNOVACIÓN

