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Abstract

The beam quadrupole moment of stored beams can be measured with a four plate quadrupole pick-up. The
frequency spectrum of the quadrupole moment contains not only the usual first-order dipole modes (the
betatron tunes) but also the second-order coherent modes, comprising of

(1.) (even) normal envelope modes,

(2.) odd (skew) envelope modes and

(3.) dispersion modes.

As a novel diagnostic tool, the measured frequencies and amplitudes provide direct access to transverse space
charge strength (through the tune shift) as well as linear coupling (and mismatch thereof), at the benefit of a
non-invasive beam-based measurement. Technically, quadrupole moment measurements require a pick-up with
non-linear positions sensitivity function. We discuss recent developments and depict measurements at the GSI
SIS18 heavy-ion synchrotron.
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Motivation

Measure direct space charge strength through frequency shift of beam size oscillations
about matched σx ,y :

1st order

rigid dipolar centroid oscillation:
Newton’s third law, actio = reactio

−→ no direct space charge (SC)
[except higher-order projections]

2nd order

quadrupolar envelope oscillation:
defocused by transverse SC force

−→ frequency of envelope oscillation
decreases with SC
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I. Overview



Quadrupole Pick-up (QPU) Schematics

Induced voltage on electrodes:

Uright ∝ Ibeam
(
1+z1x +z2+ ...

)
Uleft ∝ Ibeam

(
1−z1x +z2+ ...

)
Utop ∝ Ibeam

(
1+z1y −z2+ ...

)
Ubottom ∝ Ibeam

(
1−z1y −z2+ ...

)
image

from Ref. [1]

where

z1x ∝
〈x〉
d

,

z1y ∝ 〈y 〉
d

, and

z2∝
〈x2〉−〈y2〉

d2
=
σ2x −σ2y +〈x〉2−〈y 〉2

d2
(neglecting dispersion)
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=⇒ combine voltages to measure dipolar beam moments (usual BPM):

〈x〉∝Uright −Uleft

〈y 〉∝Utop −Ubottom

+ −
+
−
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Some Historical Perspective

Time domain for emittance measurements:
1983, R. H. Miller et al. at SLAC [2]

 challenge: remove dipole
parts in z2 ∼ 〈x〉2−〈y 〉2

2002, A. Jansson at CERN in PS [3]

Frequency domain for emittance measurements:
2007, C. Y. Tang at Fermilab [4]

Frequency domain for space charge measurements:
1996, M. Chanel at CERN in LEAR [5]
1999, T. Uesugi et al. at NIRS in HIMAC [6]
2000, R. Bär at GSI in SIS18 [7]
2014, R. Singh et al. at GSI in SIS18 [8]

=⇒ all studies for coasting beams

Figure: Quad-BTF [5]

Figure: Injection
Oscillations at SIS18 [8]

... but ...
What about bunched beams?

QPU as diagnostic tool: most useful in critical situations
synchrotrons limited by space charge ⇐⇒ bunched beam!
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Bunched Beam

QPU studies with bunched beams:
HB2018 contribution↗
−→ quadrupole BTF measurements at CERN PS
−→ study space charge shifted envelope bands
=⇒ impact of chromaticity on resonance width!
=⇒ discovery of strong coherent dispersion mode!

MCBI2019 contribution ↗
−→ injection mismatch studies at CERN PS
=⇒ coherent dispersion mode grows with head-tail instability
=⇒ discovery of skew envelope modes (linear coupling)!
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II. Newly Observed
2nd Order Modes



Skew Envelope Mode ↔ Linear Coupling

The beam features 2 odd (skew) eigenmodes: 2nd order resonances due to linear coupling
between the transverse planes (Chernin, Ref. [9, 10]).

1. low-frequency eigenmode: difference resonance Qx −Qy

2. high-frequency eigenmode: sum resonance Qx +Qy

−→ driving terms for these originate from
a. skew quadrupole component in optics
b. space charge coupling in case of unequal beam sizes (e.g. εx 6= εy !)

Key point!
Can be used as diagnostic tool:

beam-based measurement of injection mismatch in case of
linear coupling
minimise amplitude in Qx ±Qy lines via skew quadrupoles
in contrast to dipole BPM based methods (closest-tune
approach |C−|), this method includes space charge

FAIR GmbH | GSI GmbH Adrian Oeftiger 13 September 2022 7/21



Skew Envelope Mode ↔ Linear Coupling

The beam features 2 odd (skew) eigenmodes: 2nd order resonances due to linear coupling
between the transverse planes (Chernin, Ref. [9, 10]).

1. low-frequency eigenmode: difference resonance Qx −Qy

2. high-frequency eigenmode: sum resonance Qx +Qy

Example at CERN PS injection, Qx = 6.24 and Qy = 6.21:

0 200 400 600 800 1000
Turns after injection

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
na

l t
un

e 
f/f

re
v

19

20

21

22

23

24

Lo
g 

of
 sp

ec
tru

m

Figure: skew quadrupoles
providing maximum coupling

Key point!
Can be used as diagnostic tool:

beam-based measurement of injection mismatch in case of
linear coupling
minimise amplitude in Qx ±Qy lines via skew quadrupoles
in contrast to dipole BPM based methods (closest-tune
approach |C−|), this method includes space charge

FAIR GmbH | GSI GmbH Adrian Oeftiger 13 September 2022 7/21



Skew Envelope Mode ↔ Linear Coupling

The beam features 2 odd (skew) eigenmodes: 2nd order resonances due to linear coupling
between the transverse planes (Chernin, Ref. [9, 10]).

1. low-frequency eigenmode: difference resonance Qx −Qy

2. high-frequency eigenmode: sum resonance Qx +Qy

Example at CERN PS injection, Qx = 6.24 and Qy = 6.21:

0 200 400 600 800 1000
Turns after injection

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
na

l t
un

e 
f/f

re
v Qx + Qy

Qy

Qx

Qy Qx

19

20

21

22

23

24

Lo
g 

of
 sp

ec
tru

m

Figure: skew quadrupoles
providing maximum coupling

Key point!
Can be used as diagnostic tool:

beam-based measurement of injection mismatch in case of
linear coupling
minimise amplitude in Qx ±Qy lines via skew quadrupoles
in contrast to dipole BPM based methods (closest-tune
approach |C−|), this method includes space charge

FAIR GmbH | GSI GmbH Adrian Oeftiger 13 September 2022 7/21



Skew Envelope Mode ↔ Linear Coupling

The beam features 2 odd (skew) eigenmodes: 2nd order resonances due to linear coupling
between the transverse planes (Chernin, Ref. [9, 10]).

1. low-frequency eigenmode: difference resonance Qx −Qy

2. high-frequency eigenmode: sum resonance Qx +Qy

Example at CERN PS injection, Qx = 6.24 and Qy = 6.21:

0 200 400 600 800 1000
Turns after injection

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
na

l t
un

e 
f/f

re
v Qx + Qy

Qy

Qx

Qy Qx

19

20

21

22

23

24

Lo
g 

of
 sp

ec
tru

m

Figure: skew quadrupoles
providing maximum coupling

Key point!
Can be used as diagnostic tool:

beam-based measurement of injection mismatch in case of
linear coupling
minimise amplitude in Qx ±Qy lines via skew quadrupoles
in contrast to dipole BPM based methods (closest-tune
approach |C−|), this method includes space charge

FAIR GmbH | GSI GmbH Adrian Oeftiger 13 September 2022 7/21



Quadrupolar BTF

CERN PS measurements with quadrupole exciter and QPU (at ∆QKV
y = 0.02):

excitation signal
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beam response (via QPU)
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Observations:
distinct peaks around
machine tunes f < 0.25frev
frequency bands around
twice the machine tunes
(disregard the constant
frequencies, due to
instrumentation)
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Measured Quadrupole BTF

Observations:
dipole spectra: only machine tunes
distinct envelope bands below dashed 2Qx ,y lines

−→ demodulation of QPU signal with excitation −→
=⇒ distinct peak below Qx line 5.0 5.1 5.2 5.3 5.4 5.5
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Dispersion Mode

Simulations of eigenmodes present in QPU spectrum (for CERN PS, ∆QKV
y = 0.02):
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Figure: also with chromaticity

Coherent dispersion mode:

oscillation about matched dispersion, mode measures correlation
〈
x ∆pp0

〉
,
〈
y ∆p

p0

〉
negative tune shift with space charge (down from Qx)
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Dispersion Mode in Q-BTF
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Figure: Q-BTF experiment vs. simulated eigenmodes

envelope tune range: mix of space charge and chromaticity! (here Q ′ adds factor 2)
=⇒ challenging to extract space charge tune shift ∆QKV

from bunched beam Q-BTF at natural chromaticity!

coherent dispersion mode discovered in CERN PS experiment

Key point!
Again, QPU can be used as diagnostic tool:

beam-based measurement of dispersion injection mismatch
minimise amplitude in SC shifted dispersion lines via
dispersion matching
in contrast to dipole BPM based methods, this method
includes space charge
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Dispersion Mode ↔ Head-tail Motion!

CERN PS at natural chroma  (higher-order) horizontal instability
intrinsically unstable beams at typical intensities
can be cured with transverse feedback

(a) quadrupolar spectrum (b) wideband pick-up

Figure: without transverse feed-back

Interesting new opportunities!
Thoughts:

head-tail instability correlates
〈
x ∆pp0

〉
!

strong signal at coherent dispersion mode near Qx while
dipolar mode 2Qx only faintly visible

=⇒ promising diagnostic tool to further investigate topic
head-tail instabilities vs. space charge
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III. GSI SIS18 Measurements

(Chromaticity Impact on Envelope)



Setup

SIS18 setup of Q-BTF experiment:
quadrupole exciter in sector 4

power max. 400W
peak voltage 3 kVpp
frequency range 100 kHz to 2MHz

quadrupole pick-up in sector 12
flat-top at Bρ = 4.2 Tm (with Pb65+ ions)

=⇒ almost vanishing space charge: ∆QKV
y = 0.0005

set tunes: Qx = 4.1 and Qy = 3.22
−→ expect envelope tunes around 2qx = 0.2 and 2qy = 0.44

quadrupole excitation sweep: 0.05 to 0.45 tune
no head-tail instabilities with ions at SIS18 intensities!
=⇒ zero chromaticity without problems (in contrast to CERN PS)
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Simulations of Q-BTF

Natural Chromaticity

Zero Chromaticity Simulations of 10ms sweep:

−→ main response around
2Qx , i.e. horizontal
envelope tune

−→ indeed, zero
chromaticity (corrected
with sextupoles)
features narrower
response

−→ beam size growth
mainly in horizontal
plane by up to 50%
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−→ indeed, zero
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Simulation Comparison
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=⇒ zero chromaticity Q-BTF response ≈ 2.3 narrower than for natural chromaticity!
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Measurements

Measurements with Q-BTF of 50ms sweep time (at 80W), natural chromaticity:
−→ observe dipolar feed-down of quadrupolar excitation =⇒ coherent tunes Qx ,y
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Measurements

Measurements with Q-BTF of 50ms sweep time (at 80W), natural chromaticity:
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Evaluation of 50ms Sweep
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Excitation and Response

excitation
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Measured Quadrupole BTF

FFT
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=⇒ horizontal envelope band of 0.027 width (FWHM 0.012)
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Zero Chromaticity (10ms Sweep)

Correcting the chromaticity to Q ′
x ,y = 0 via 2 sextupole families:

0.20 0.22 0.24 0.26 0.28 0.30
fractional tune f/frev

0.000

0.002

0.004

0.006

0.008

0.010

qu
ad

ru
po

la
r s

pe
ct

ru
m

horizontal envelope band
with natural chromaticity

=⇒ chromaticity is indeed the main factor behind broad envelope resonance
=⇒ measuring space charge at zero chromaticity eliminates this influence!
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Conclusion

Quadrupole pick-ups can provide non-invasive beam measurements:
require non-linear pick-up structure
frequency domain works better than time domain
useful mismatch information in quadrupole spectrum:

skew envelope modes: linear coupling
dispersion modes: transverse-longitudinal correlation
−→ dispersion mismatch, head-tail instability

even envelope modes: betatron mismatch
typically 2nd order modes modify with space charge (as opposed to dipole order):

frequencies detune
mismatch oscillation amplitudes include space charge mismatch

=⇒ measure space charge strength (at zero chromaticity)

confirmed chromaticity broadening envelope mode width (with new GSI SIS18 setup)
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Thank you for your attention!
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