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Abstract
One of the fundamental challenges of using machine-

learning-based inverse models for optics tuning in accel-
erators, particularly transfer lines, is the degenerate nature
of the magnet settings and beam envelope functions. More-
over, it is challenging, if not impossible, to train a neural
network to compute correct quadrupole settings from a given
set of measurements due to the limited number of diagnos-
tics available in operational beamlines. However, models
that relate BPM readings to corrector settings are more for-
giving, and have seen significant success as a benchmark for
machine learning inverse models. We recently demonstrated
that when comparing predicted corrector settings to actual
corrector settings from a BPM inverse model, the model
error can be related to errors in quadrupole settings. In this
paper, we expand on that effort by incorporating inverse
model errors as an optimization tool to correct for optics
errors in a beamline. We present a toy model using a FODO
lattice and then demonstrate the use of this technique for
optics corrections in the AGS to RHIC transfer line at BNL.

INTRODUCTION
Machine learning (ML) has seen a significant growth in

its adoption for widespread applications. In particle accel-
erators, ML has been identified as having the potential for
significant impact on modeling, operation, and controls [1,
2]. These techniques are attractive due to their ability to
model nonlinear behavior, interpolate on complicated sur-
faces, and adapt to system changes over time. This has led to
a number of dedicated efforts to apply ML, and early efforts
have shown promise.

For example, neural networks (NNs) have been used as
surrogates for traditional accelerator diagnostics to generate
non-interceptive predictions of beam parameters [3, 4] or for
a range of machine tuning problems utilizing inverse mod-
els [5]. When used in conjunction with optimization algo-
rithms, neural networks have demonstrated improved switch-
ing times between operational configurations [6]. Neural
network surrogate models have also been demonstrated to
significantly speed up multi-objective optimization of ac-
celerators [7]. Additionally, ML has been of interest for
anomaly detection for root cause analysis [8] and for outlier
detection, using large data-sets of known good operational
states [9], using autoencoders.

In this work we seek to apply ML methods — for both
tuning and anomaly detection — on the AGS to RHIC trans-
fer line at Brookhaven National Laboratory. Specifically,
we employ the use of inverse models for these applications.
The application of inverse models for anomaly detection

is a burgeoning area of research in many other fields that
has not seen much attention in particle accelerators. Here
we present our work towards implementing inverse models
to detect errors in quadrupoles using only beam position
monitors and corrector data. We will demonstrate the utility
of this approach using a toy model, and then show how it
scales to a larger system such as the AGS to RHIC transfer
line. We will then show results of training inverse models
using data from the machine and discuss future work for this
effort.

FODO BENCHMARK
Before applying our technique to the ATR line, we first

demonstrate the efficacy of our technique using a toy prob-
lem. Here we consider a linear system comprised of two
quadrupoles, four beam position monitors and two correc-
tors that operate in both the horizontal and vertical plane.
The training data consisted of 5000 examples simulated by
randomly changing corrector strength and the initial beam
position. The model was trained to predict the corrector
setting for a given set of BPM readings. The network archi-
tecture was optimized as a function of the number of layers
as well as the nodes per layer to improve training loss without
over-fitting. Figure 1 shows the model prediction compared
to the ground truth for each of the correctors (kickers). The
relationship is almost perfectly linear in all cases, indicating
the model is well trained.

Figure 1: Real corrector setting on the x-axis with inverse
model output result on the y-axis. The plots show a well-
trained inverse model.

To evaluate the neural network against standard linear
model benchmarks, we trained a linear model using the same
data as the neural network. We also introduced different
sextupole strengths to the lattice in order to understand the
impact of a simple nonlinearity on the system. The linear
model was compared to the neural network model for each
case. Figure 2 shows the RMS prediction error on the test
data for each of the correctors and the aggregate error which
is computed as the sum of the squares of the individual
corrector errors.
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Figure 2: RMS prediction error for kickers in the FODO
and nonlinear system based on model type and nonlinearity
strength.

We see that the neural network does a better job at pre-
dicting the corrector settings even for the linear model case.
There is also a weak improvement in the model prediction
for the lattice with a sextupole component. This gives a good
indication that the neural network will be a better solution
in general even for the linear case.

Next we tested the model using data with systematically
introduced errors in individual quadrupoles. We ran the
MAD-X simulations with random corrector strengths and
initial beam positions for a fixed quadrupole strength er-
ror. We then compared the predicted corrector settings to
the actual corrector settings as we varied the quadrupole
error. Figure 3 shows the model error as a function of both
the quadrupole strengths being varied. Here we see a well-
defined minima around the nominal lattice configuration,
which is a quadrupole error of unity.

ATR STUDIES
Next we applied this concept to the UW line in the ATR.

The problem is a bit more complex as there are now not
just quadrupoles, correctors, and BPMs, but also combined
function bends and vertical bends. Moreover there are com-
paratively few BPMs and correctors — only 26 and 14 re-
spectively — making the model more subject to degenera-
cies. This combined with the 19 quadrupoles significantly
increases the complexity of the problem space.

We trained the inverse model using 5000 samples, ran-
domly varying the corrector strengths and beam initial posi-
tions. During our initial training of the inverse model four
correctors (utv4, uth6, utv7, and wth1) were not well fit. In
future work we will address this issue, however, for stud-
ies presented here we simply removed those four correctors

Figure 3: Model error as a function of quadrupole strength
error as we vary both quads in the FODO cell.

from the prediction. For the correctors we did include we
see very good agreement between the model prediction and
the ground truth. We then included single quadrupole errors
to evaluate the feasibility of detecting such an error with
the inverse model. Figure 4 shows the predicted corrector
settings vs the ground truth for three cases. Black is the
beamline without any quadrupole errors. Blue is the beam-
line with a single quadrupole excitation error of negative
20%. Red is the same quadrupole error as blue but with a
positive 20% excitation. Here we can clearly see the model
can detect the error and even can pinpoint the location of
the quadrupole error.

For tuning it is important to understand how the model
error varies as each quadurpole magnet is changed. Figure 5
shows the model error as a function of quadrupole strength
for six of the magnets in the beamline. Here we can clearly
see that the model has very different sensitivities to different
magnets. Moreover the model error is not always centered
around the nominal excitation. To address this we consider
the use of ensemble methods.

ENSEMBLE METHODS
Ensemble methods allow one to generate an aggregate

prediction when individual models don’t perform as well.
This is especially helpful when the model is less sensitive to
the particular quadrupole error. Figure 6 shows the model
error as a function of quadrupole strength for an ensemble of
25 models. Each model is trained on the same data, however,
random initializations are used for the weights.

When we aggregate the output of these models we see
a clear improvement in the model error as a function of
quadrupole strength. Figure 6 shows the median and the
mean error of the ensemble predictions as a function of
quadrupole strength. Note that the a quadrupole strength of
zero is no error in the quadrupole setting. Compared with
Fig. 5, the curves that were not centered around the correct
quadrupole excitation are now behaving correctly. While the
relationship between model error and quadrupole excitation
is not the same strength along the beamline, this approach
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Figure 4: Black: model prediction vs ground truth with no quadrupole errors. Blue: model prediction vs ground truth for a
negative 20% quadrupole error. Red: model prediction vs ground truth for a positive 20% quadrupole error.

Figure 5: Model error as a function of quadrupole strength
for six of the magnets.

demonstrates that an ensemble can improve the performance
of the inverse model method.

Another advantage of the ensemble method is gaining
uncertainty information. This is important when using the
method as a diagnostic as the uncertainty in the diagnostic
is an important consideration for operations. Figure 7 shows

Figure 6: Model error as a function of the quadrupole exci-
tation strength for six of the quadrupoles. Here we show the
median and mean output of the ensemble.

the ensemble output with the uncertainty (standard deviation
in the ensemble) as the shaded region.

There is a clear correlation between the quadrupoles with
high uncertainty and the quadrupoles that didn’t have a good
correlation between the model error and the quadrupole
errors in Fig. 5.
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Figure 7: Model error as a function of the quadrupole
strength for six of the quadrupoles. Here we show the en-
semble mean and the variance.

CONCLUSIONS
In this paper we have refined the use of a neural network

inverse model to detect quadrupole strength errors when
trained on bpm and corrector data for a nominal setup. This
method can be used as a diagnostic or for model-based tun-
ing. We also show the use of ensemble methods to improve
the quality of the model prediction; additionally, ensemble
methods can provide a rudimentary uncertainty metric. We
are continuing to refine our techniques in addition applying
our technique to measured data collected during this period
of performance.
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