

Measurement of Bunch Length and Temporal Distribution using Accelerating Radio Frequency Cavity in Low Emittance Injector

Sep. 15, 2021 | <u>Ji-Gwang Hwang</u> | Helmholtz-Zentrum Berlin für Materialien und Energie Tsukasa Miyajima, Yosuke Honda | High Energy Accelerator Research Organization (KEK) Eun-San Kim | Korea University Sejong Campus

Member of the Helmholtz Association

ji-gwang.hwang@helmholtz-berlin.de

Zentrum Berlir

Low-energy and high-quality beams

Radial field in TM01-mode accelerating cavity

An **accelerating RF cavity** can provide a **phase-dependent transverse kick** to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position.

The equation of motion with the maximum acceleration phase (on-crest phase)

$$\frac{dp_r}{dt} = e(E_r - \beta c B_\theta) = -\frac{er}{2} \left[\frac{\partial E_z}{\partial z} - \frac{\beta}{c} \frac{\partial E_z}{\partial t} \right]$$

For high energy beams ($\beta \simeq 1$), the transfer matrix can be calculated analytically (in Rosenzweig's paper) which is well known as a **SRF focusing effect**. J. Rosenzweig and L. Serafini, Phys. Rev. E **49**, 1599 (1994)

For low energy beams, the transverse motion is complicated by the significant changes in the velocity of an electron inside the cavity owing to its low initial kinetic energy.

→ Numerical simulation using **General Particle Tracer**

Bunch length measurement using TM01 cavity

Since the phase can be expressed as $\phi = \omega t$, the horizontal distribution convoluted by the initial temporal distribution is given by

$$G(x) = \int f(\tau)g(x - (d_{11}x_0 + d_{12}x_0')\omega\tau) d\tau$$

, where f(x) and g(x) are a temporal and horizontal distribution, respectively.

If the beam has a Gaussian distribution and is transversally small, the transverse beam size is determined by the bunch length, initial offset and angle, and accelerating RF cavity parameters as

$$\sigma_x = \sqrt{\sigma_{x0}^2 + ((d_{11}x_0 + d_{12}x_0')\omega\sigma_t)^2}$$

, where σ_{x0} is the initial beam size at the screen without offset and σ_t is the bunch length.

Remark:

1. Small σ_{x0} (focusing on the screen downstream) improves the resolution of the method. 2. Since the σ_{x0} is determined by the integration of complex physics processes including optics, energy variation as well as low-energy beam dynamics, **it is not necessary to deconvolute the emittance dilution by space charge effects**.

Proof-of-principle test at compact-ERL

Bunch length measurement using TM01 cavity

For determining the absolute bunch length, we must know: ω , d_{11} , d_{12} , x_0 , x_0' .

To make the problem simple, we performed our experiments with $x_0 = 0$.

$$\sigma_x = \sqrt{\sigma_{x0}^2 + (\boldsymbol{d_{12}}\boldsymbol{x_0'}\boldsymbol{\omega}\sigma_t)^2}$$

The ω , x'_0 can be estimated by pre-calibrations, and then, unknown parameter is only d_{12} .

Can we measure d_{12} in the experiment?

Yes! From the definition, $\Delta x = d_{12}x'_0\phi$, the $d_{12} = \Delta x/(x'_0\phi)$.

Then it is necessary to measure the position variation as a function of the phase with a fixed initial angle.

Resolution: about **0.98 ps**. (It can be improved by increasing the field gradient of the cavity or lowering the initial beam energy.)

Bunch length measurement using TM01 cavity

Long pulse

: laser stacking of 8 pulses with 2 ps separation

13.51 +/- 0.03 ps for $E_{acc} = 7.21 \text{ MV/m}$

Short pulse

: a single laser with a duration of 3.3 ps rms

3.39 +/- 0.12 ps (rms) for $E_{acc} = 7.11 \text{ MV/m}$

2.94 +/- 0.15 ps (rms) for $E_{acc} = 7.95 \text{ MV/m}$

Radial electric-field always **exists** in a TM01-mode accelerating cavity.

It was considered harmful and interventive (dilutes emittance) for high-quality low-energy beams.

Here, we propose to use it for measuring a **temporal profile/bunch length** of the high-quality beam with only existing instruments in the beamline. (below 3 MeV relying on the field gradient)

The center of the cavity should be defined to use this method.

We have proven that this can be done without special instruments

- 1. Measure $dY_C/d\phi_{SC1}$ with various offset (at least three point)
- 2. Estimate the electromagnetic center by $dY_{\it C}/d\phi_{\it SC1}=0$
- 3. Confirm it by varying beam offset inside a cavity

See J.-G. Hwang et.al., Nucl. Instrum. Methods Phys. Res. Sect. A, 753, 97 (2014)

Special thanks to compact-ERL collaborators for their efforts in constructing and performing the machine commissioning.