TWO-DIMENSIONAL BEAM SIZE MEASUREMENTS WITH X-RAY HETERODYNE NEAR FIELD SPECKLES

M. Siano¹, B. Paroli¹, M. Potenza¹, L. Teruzzi¹

U. Iriso², A. A. Nosych², E. Solano², L. Torino²

D. Butti³, A. Goetz³, T. Lefevre³, S. Mazzoni³, G. Trad³

¹Università degli Studi di Milano ²ALBA ³CERN

Outline

- Introduction
- The Heterodyne Near Field Speckles technique
- Results at ALBA
- Conclusions

Beam size measurements

Why do we measure beam sizes?

- Emittance in storage rings
- Luminosity in colliders
- Coherence of emitted SR (X-rays)

How do we measure beam sizes?

- Imaging (X-ray pinhole camera)
- Interferometry (Young)
- Heterodyne Near Field Speckles (?)

X-ray pinhole camera

Light through the aperture forms an inverted, magnified image of the source

Pros: 2D, simple
Cons: limited resolution

Double-slit interferometry

Beam size is inferred from the visibility of interference fringes (Complex Coherence Factor of the radiation, CCF)

Pros: high resolution

> Cons: 1D, one length-scale, mainly with visible light

The probe: colloidal suspensions

SiO₂ spheres, 500 nm diameter

X-ray speckles at NCD undulator beamline (ALBA)

HNFS: the single particle case

Circular interference fringes modulated by 2D CCF Spatial frequency of fringes increases away from the center (chirped signal): spatial scaling

Siano M. • 2D Beam Size Measurements with X-ray HNFS • IBIC 2021 • 14/09/2021

Cerbino R, *et al*, *Nat. Phys.* **4**, 238 (2008) Alaimo MD, *et al*, *PRL* **103**, 194805 (2009) Siano M, *et al*, *Adv. Phys. X* **6**, 1891001 (2021)

Spatial scaling

 $\Delta r = z \frac{q}{k}$

Cerbino R, *et al*, *Nat. Phys.* **4**, 238 (2008) Alaimo MD, *et al*, *PRL* **103**, 194805 (2009) Siano M, *et al*, *Adv. Phys. X* **6**, 1891001 (2021)

HNFS: many particles

2D coherence mapping via PS of heterodyne speckles

$$I(q,z) = T(q,z)C\left(z\frac{q}{k}\right) \qquad C = |\mu|^2 \qquad T(q,z) = 2\left[\sin\left(\frac{zq^2}{2k}\right)\right]^2 \quad \text{Talbot} \text{ oscillations}$$

HNFS: general formulation

$$I(q,z) = T(q,z)C\left(z\frac{q}{k}\right)H(q)S(q) + P(q)$$

H(q) = MTF (resolution) S(q) = particle form factor <math>P(q) = noise

We can measure the MTF under actual operating conditions (in-line, at-wavelength) from speckles at short *z*:

$$C\left(z\frac{q}{k}\right) \to 1$$
 for $z \to 0$

The HNFS setup at NCD (ALBA)

Experimental data: coupling scan

Power spectra are tilted by 5 deg (beam? optics?)

As the beam coupling increases:

- same hor coherence (beam size unchanged)
- ver coherence decreases (beam size increases)

Data reduction

Data reduction

$$H(q)S(q) = \frac{I(q,z) - P(q)}{T(q,z)}$$

Data reduction

Results: coherence

Horizontal coherence length (rms) [µm]				Vertical coherence length (rms) [µm]				
κ = 0.50 %	κ = 0.65 %	κ = 1.60 %	κ = 2.80 %	κ = 0.50 %	κ = 0.65 %	κ = 1.60 %	κ = 2.80 %	
4.2 ± 0.2	4.3 ± 0.2	4.1 ± 0.2	4.3 ± 0.2	105 ± 32	65 ± 11	44 ± 4	36 ± 1	

Results: beam sizes

125 ± 6	122 ± 6	126 ± 6	122 ± 6	4.5 ± 1.4	7.5 ± 1.3	11.3 ± 1.0	14.3 ± 0.4

Conclusions and perspectives

- HNFS as a 2D interferometric technique for measuring few-µm beam sizes
- Tested at NCD (ALBA) for 4 different values of the beam coupling
- Further outcome: in-line at-wavelength measurement of the system MTF
- In the future, test novel samples (gold) to increase SNR