

Measurement and Reconstruction of a Beam Profile Using a Gas Sheet Monitor by Beam-Induced Fluorescence Detection in J-PARC

Ippei YAMADA*, Motoi WADA **Doshisha University**

Katsuhiro MORIYA, Junichiro KAMIYA, Michikazu KINSHO J-PARC center (Japan Atomic Energy Agency)

* also at J-PARC center

10th International Beam Instrumentation Conference

VERITAS

BFRABI

VOS

Japan Proton Accelerator Research Complex (J-PARC)

J-PARC: Intensity-frontier proton accelerator LINAC

 $: \sim 400 \text{ MeV}$ (50 mA, 500 us, 25 Hz) **R**apid-Cycling Synchrotron : ~ 3 GeV => 8.3×10^{13} protons x 3 GeV x 25 Hz = 1 MW => must keep beam loss less than 10-4 Main Ring :~ 30 GeV

Radiation dose is most important problem to operate accelerator Destructive monitoring => inducing beam loss, radio-activating monitor, breaking monitor

Non-destructive monitor is strongly required

- to study high-intensity beam dynamics
- to operate accelerator with minimum loss

Non-destructive profile monitor: Gas sheet monitor

Gas Sheet Monitor (GSM)

- 1. Injecting a sheet-shaped gas
- 2. Producing ions, electrons, and photons by beam-gas interaction
- 3. Detecting distribution of produced particles as **2D image**

Distribution of produced particles \propto Beam profile \times Gas distribution => **Non-destructive** transverse profile monitor

We discuss **fluorescence** detection in this contribution

Contents:

- Formation of gas sheet
- Measurement of high-intensity (J-PARC) beam
- Evaluation of gas sheet distribution at off-line system
- Reconstruction of 2D beam profile

Gas sheet generator: Principle

Gas sheet formation is based on *rarefied gas dynamics**

• Collision-less approximation

Mean free path >> chamber size

- = intermolecular collisions are negligible
- *Cosine law* for reflection on wall \bullet Probability distribution function $p(\theta)$ of reflection angle θ (with respect to normal direction of wall) $\Rightarrow p(\theta) \propto \cos \theta$

Gas molecules moving with thermal velocity enter

a long gas conduit with a thin cross section = gas sheet generator

- => Conduit increases the number of reflections in thickness (z) direction
- => Molecules obtaining large angle θ pass conduit and form gas sheet

Cover chamber with slit to cut the tail part of sheet

- => keep background pressure low
 - (for high pressure,

more important because sheet spreads due to collisions)

* N. Ogiwara, Proc. of IPAC2016, (Busan, Korea, 2016) WEOBB03.

Gas flow can be calculated by

- individual motion with constant (thermal) velocity
- particular reflection on wall: *cosine law*

Monte-Carlo simulation (ex. Molflow+ code at CERN)

=> Calculating gas flux distribution along thickness direction at beam-gas interaction point for Conduit of 100 mm \times 50 mm \times 0.1 mm w/ and w/o slit of 50 mm \times 0.5 mm

✓ Sheet-shaped distribution can be formed Cover chamber cuts the tail part of the sheet

Developed gas sheet monitor system

* Plum et al., Nucl. Instrum. Meth. Phys. Rev. A, 492, (2002), 74-90.

	Image intensifier : Gain < 10 ⁴	
	CCD camera	: 16bit, 1920 x 1080 px
mm	Solid angle	: 0.05 sr (0.39% of 4π)

Installation in J-PARC MEBT test stand

H- beam measurement (Raw data)

Conditions

<u>Beam</u>	
Current	: 60 mA
Pulse length	: 50 us
Species	: H-
Repetition	: 25 Hz
Photon detector	
Exposure time T	: 20 s
Image intensifier gate	: 10 us
<u>Gas sheet</u>	
Inlet pressure	: 100 Pa
Background pressure	: 5.6 x 10 ⁻⁵ Pa
(Main chamber)	

- Averaging
- Moving median : 5 x 5 px
- Moving average: 5 x 5 px
 - (31 px = 1 mm)
- Background subtraction Image w/ gas injection

✓ Fluorescence induced by beam-gas interaction can be detected. Profile reconstruction considering gas distribution is necessary

-10

0

Position [mm]

* I. Yamada et al., Phys. Rev. Accel. Beams, 24, 042801 (2021).

Image processing

: 80 frames

- Image w/o gas injection

Reconstruction: Principle

Gas Sheet Monitor

- Photons produced not only by gas sheet but also by background gas
- Photons are integrated along y axis
- and constructs luminous intensity distribution (captured image) : g(x, z)

g(x,z) = k(x,y,z) F(x,y) dy

F(x, y) : Transverse beam profile

k(x, y, z): Relative-sensitivity spatial distribution

- Gas density spatial distribution
- Efficiency distribution of CCD image sensors
- Non-uniformity of solid angle along y axis
- Optical aberration, out of focus, ...

2D beam profile can be reconstructed by giving k(x, y, z)

and solving integral equation

* I. Yamada et al., Phys. Rev. Accel. Beams, 24, 042801 (2021).

Reconstruction: Sensitivity distribution measurement

- Scanning beam position and arraying the signal 3. construct sensitivity distribution k(x, y, z)

Reconstruction: Analysis

Comparing 2.

$$g_{\text{int}}(x,z)$$
 =

=> <u>2D transverse beam profile can be reconstructed !!</u>

I. Yamada, 10th International Beam Instrumentation Conference, TUOA04

Evaluation of reconstructed beam profile

Comparison of Gas Sheet Monitor (GSM) and Wire Scanner Monitor (WSM)

Wire scanner monitor => Destructive type, 1-dimensional (projected profile), utilized for operation in J-PARC => Projecting 2D profile measured by GSM into 1D profile

Accuracy of reconstructed profile:

- Disagreement rate of distributions $g_{int}(x, z)$ for $g_{H^-}(x, z)$
- \Rightarrow Total 7% \pm 2% on average

I. Yamada, 10th International Beam Instrumentation Conference, TUOA04

X [mm]

Various profile measurements (Beam : 3 MeV, 60 mA, 25 Hz, H-)

100-pulse measurement

Gate width: 50 us

Exposure time: 4 s (x 25 Hz = 100 pulse)

Averaging: 1 frame

Inlet pressure: 100 Pa

Main chamber: 5.6 x 10⁻⁵ Pa

Possibility of Pulse-to-pulse measurement

<u>_ow-pressure measurement</u>

Gate width: 50 us Exposure time: 200 s Averaging: 30 frame Inlet pressure: 0.1 Pa

=> Various kinds of profile measurements are possible

Main chamber: 1.4 x 10⁻⁶ Pa (Base: 1.2 x 10⁻⁶)

No-influence measurement on gas pressure

1us measurement

Gate width: 1 us

Exposure time: 200 s

Averaging: 10 frame

Inlet pressure: 100 Pa

Main chamber: 5.6 x 10⁻⁵ Pa

Possibility of time-development measurement

12000
10000
8000
6000
4000
2000
0

Summary & Next step

- ✓ Forming gas sheet based on rarefied gas dynamics and simulating gas flow using Monte-Carlo code ✓ Developing gas sheet monitor system and installing the monitor on J-PARC MEBT test stand ✓ Measuring J-PARC 3 MeV 60 mA H- beam profile
- ✓ Formulating the gas sheet monitor's principle as integral equation to reconstruct beam profile
- ✓ Quantifying relative-sensitivity distribution by injecting thin beam into gas sheet monitor
- ✓ Reconstructing 2D transverse beam profile
- ✓ Applying gas sheet monitor for various profile measurement
- ◆ Investigating time development of beam profile ◆ Investigating effect of gas sheet injection on beam (transportation) ◆ Introducing gas sheet monitor into J-PARC beam line for operation

Summary

I. Yamada, M. Wada, K. Moriya, J. Kamiya, M. Kinsho, 10th International Beam Instrumentation Conference, TUOA04

Appendices

Appendix 2: Effect of Gas Sheet Injection on Beam

<u>One of the effects of gas injection: charge stripping of beam</u> $H^- + N_2 \rightarrow H^0 \text{ (or } H^+\text{)} + N_2 \text{ (or } N_2^+\text{)}$

H- and H⁰ can be separated by bending magnet => H- current reduction rate vs. gas sheet flux*

* I. Yamada et al., Phys. Rev. Accel. Beams, 24, 042801 (2021).

We are starting to investigate not only charge stripping but other effects of gas injection in more detail

Summary 1: Concept of Gas Sheet Monitor

<u>High-intensity hadron accelerator (J-PARC)</u>

- => Requires **non-destructive monitor** to avoid break of monitor and beam loss
- => Developing 2D transverse beam profile monitor based on beam-gas interaction: *Gas Sheet Monitor*

Gas sheet monitor (GSM)

- injects sheet-shaped gas
- produces photons (secondary particles)
- detects distribution of photons as a 2D image
- => Luminous intensity distribution g(x, z), Beam profile F(x, y), sensitivity dist. k(x, y, z)are correlated by **integral equation**

Procedure of profile measurement

- Developing gas sheet monitor
- Evaluating sensitivity distribution at off-line system
- Measuring high-intensity beam
- Reconstructing 2D beam profile

I. Yamada, M. Wada, K. Moriya, J. Kamiya, M. Kinsho, 10th International Beam Instrumentation Conference, TUOA04

Summary 2: Development of GSM

Gas sheet formation is based on *Rarefied Gas Dynamics**

Collision-less approximation

Mean free path >> chamber size

Cosine law for reflection on wall

Prob. dist. function $p(\theta)$ of reflection angle θ : $p(\theta) \propto \cos \theta$

Thin and long gas conduit forms gas sheet

by increasing reflections in thickness direction

* N. Ogiwara, Proc. of IPAC2016, (Busan, Korea, 2016) WEOBB03.

Summary 3: Evaluation of Sensitivity Dist. (off-line)

Evaluation of **relative-sensitivity distribution**

• Gas density distribution

- Efficiency distribution of CCD image sensors
- Non-uniformity of solid angle along *y* axis
- Optical aberration, out of focus, ...

by injection of thin beam instead of high-intensity beam into GSM at off-line system

I. Yamada, M. Wada, K. Moriya, J. Kamiya, M. Kinsho, 10th International Beam Instrumentation Conference, TUOA04

Summary 4: Measurement of High-Intensity Beam

Conditions

Beam: J-PARC MEBT test stand

Species	: H-
Energy	: 3 MeV
Current	: 60 mA
Pulse length	: 50 us
Repetition	: 25 Hz

Photon detector

Averaging $: 1.5 \times 10^{17} \text{ H}^{-1}$

 $(= 60 \text{mA} \times 10 \text{ us} \times 25 \text{ Hz} \times 1600 \text{ s})$

Gas sheet

Inlet pressure Background pressure

: 100 Pa : 5.6 x 10⁻⁵ Pa (Main chamber)

In pre-recorded talk, we show results of other 3 conditions

* I. Yamada et al., Phys. Rev. Accel. Beams, 24, 042801 (2021).

Summary 5: Reconstruction of Beam Profile

Â

I. Yamada, M. Wada, K. Moriya, J. Kamiya, M. Kinsho, 10th International Beam Instrumentation Conference, TUOA04

$$= \int k(x, y, z) F(x, y) \, \mathrm{d}y$$

1 Formation of gas sheet

Gas sheet is formed based on Rarefied gas dynamics

Gas sheet

=> <u>Negligible intermolecular collisions</u>,

Procedure of Beam Profile Measurement

Reflection on wall based on *cosine law*

=> Sheet generator: Conduit of $100 \text{ mm} \times 50 \text{ mm} \times 0.1 \text{ mm}$ Gas flux distribution simulated by Molflow+ code

background gas

I. Yamada, M. Wada, K. Moriya, J. Kamiya, M. Kinsho, 10th International Beam Instrumentation Conference, TUOA04

Measurement and Reconstruction of a Beam Profile Using a Gas Sheet Monitor by Beam-Induced Fluorescence Detection in J-PARC

2 Evaluation of sensitivity (gas) distribution k(x, y, z)by injecting thin beam into the gas sheet monitor at off-line system

③ Measurement of J-PARC beam: g(x, z)

J-PARC 3 MeV, 60 mA H- beam was detected with fluorescence

(4) Reconstruction of 2D beam profile: F(x, y)

Luminous distribution of captured image g(x, z) correlates with beam profile F(x, y) through integral equation:

$$g(x,z) = \begin{bmatrix} k(x,y,z) & F(x,y) & dy \end{bmatrix}$$

Reconstructed profile corresponds to ordinary monitor's profile

X [mm]

Sensitivity distribution