

BPM system development & applications in commission of SXFEL-SBP

B.Gao , J.Chen, S.S.Cao, L.W.Lai, Y.B. Leng, R.X.Yuan, L.Y.Yu SSRF BI Group

SXFEL introduction

Motivation

CONTENTS

BPM system development & performance

Applications

Summary

SXFEL introduction

SXFEL

-

783-

SXFEL 2m, LCINAC, 2 undulator beamline, 5 experimental stations 1-5 GeV LINAC (S+C+X band) Water window soft X-ray

SSR

Shanghai soft X-ray Facility (SXFEL)

- SXFEL consists of:
 - SXFEL-TF
 - SXFEL-UF
 - Shanghai-XFEL Beamline Project (SBP)
- SXFEL-TF (0.8Gev) began construction from 2014, completed commissioning and national acceptance in 2020
- SXFEL-UF & SBP (1.5Gev) received funding in 2016 and then started construction

SXFEL layout & Main technical target of SBP

Beam charge (nC)	0.5	0.6	
Beam energy (GeV)	1.5	1.357	
Emittance (mm.mrad, rms)	≤ 1.5	1.5	
Peak current(A)	≥700	1000	

	Target	Actual value
Wavelength (nm)	2.0	1.98
Length (ps)	~ 0.4	< 0.3
Power (MW)	≥ 100	≥ 400

Layout of SBP undulator beamline

Main parameters		
FEL wavelength	~2 nm	
FEL peak power	≥100MW	
FEL pulse length	~400 fs (FWHM)	
FEL pulse energy stability	~10% (rms)	
FEL transverse position stability	~10% (rms)	

- 10 in-vacumm undulator IVU16, SASE, aim to 2nm wavelength radiation;
- High-accuracy BBA system, cavity BPM, phase shifter, Correction magnet, Quadrupole magnet...

SBP SASE commission time line

Motivation of BPM development

• From physics requirements:

- LINAC: High-precision position measurement to ensure the stability of beam orbit, Resolution requirement: 10μm@500pC;
- Undulator: High-precision position measurement to ensure that the electron beam and the seed laser are strictly coincident in three dimensions. Resolution requirement: 1µm@500pC.

• For accelerator operator:

- The basis of the feedback system;
- To ensure the stability of FEL output power;
- Non-interceptive measurement
- Relative measurement of bunch charge
- For user:
 - Stable X-ray

BPM system development

Layout of BPMs for SXFEL

32 CBPM

Stripline BPM

Resolution requirement: 10µm @ 500pC

	Beam pipe Diameter (mm)	Length (mm)	Angle (°)	Quantity
Z	25	150	30	27
1	35	150	20	16
•	16	150	20	7

Cavity BPM Resolution requirement: 1µm @ 500pC

Cavity	Frequency	Q Value
Reference	4693± 3MHz	2250 ±10%
Horizontal	4681 ±3MHz	4500 ±10%
Vertical	4688±3MHz	4500 ±10%

BPM system 1: Stripline BPM introduction

Stripline BPM pickup

System structure diagram

Homemade Digital BPM processor

Parameters	value	
Channels	4	
Central Frequency	500MHz	
Bandwidth	~20MHz	
Dynamic range	31dB	
ADC bits	16	
Max ADC rate	125MSPS	
FPGA	Xilinx xc5vsx50t	
Clock	Ext./Int.	
Trigger	Ext./Self/Period	
Software	Arm-Linux/EPICS	

BPM system 2: SBPM performance evaluation

BPM system 2: CBPM introduction

Cavity	Frequency	Q Value
Reference	4693± 3MHz	2250 ±10%
Horizontal	4681 ±3MHz	4500 ±10%
Vertical	4688±3MHz	4500 ±10%

- High Precision Beam Position Measurements Resolution: 1 nm @500pC
- **Relative measurement of bunch charge** Resolution 0.1%
- System measurement linear range ≥±2mm@500pC

BPM system 2: CBPM RFFE + electronics

RFFE

Homemade DBPM

BPM system 2: CBPM performance evaluation

"Three BPM" method

Horizontal: 379.5 nm

Vertical: 273 nm

1.5

BPM system OPI

MPS \otimes Vacuum -2000 Undulator Timing 4000-2000-BPM -6000 × 101710 Profile -5000 11 N12PH2 12 N12PH2 12 N12PH4 ICT BBA MapADC A : FFT Cente MappADC B: 7648 FFT Width Phase Shifter Period Va: 724693 Vb: 122563 liber Vo: 937 Offset x VH: 124501 Offset v: 1000 * Cwity Kat Y: -0.9844 Attenuator : Sum: 124501 ADC Threshold: -500 Trigger Count : 66132 ADC Sampling Clock -\$10000 Internal Oucle (ms): External -15000-

•

X - Y P88

ADC Fina Weinford

Orbit display used for commission

Applications in SXFEL commission

Applications in commission: Orbit feedback system

BPM is the basic measurement element of the orbit feedback system

Purpose:

- Transport the electron beam from the gun to the main beam dump
- Restore reference trajectory
- Tune manually the trajectory to
- Keep the trajectory during user beamtime

Multi-point orbit feedback based on the response matrix SVD+PID

- The slow drift of the beam orbit at the exit of the accelerator is improved from $200\mu m/day$ to $<5\mu m/day$ (rms)
- Long-term stable operation (<10µm/week)

Applications in commission: charge measurement

By Gu, Duan

Applications in commission: Charge feedback system

SBPM SUM signal is used for the charge feedback

- SBPM based relative charge measurement resolution:0.06%;
- Charge jitter 0.96%

By Feng, Chao

Applications in commission: De-dispersion

By Feng, Chao

Applications: Transverse matching

Transverse matching to control the beam size to meet the conditions for generating FEL

s (m)

After matching, the beam size is well controlled

SASE commission time line

Summary

- BPM R&D:
 - 50 SBPMs+ 22 CBPMs have been developed and used in SXFEL-SBP;
 - SBPM: Resolution of beam position measurement: 1.6 μm @500pC, relative charge measurement: 0.061%@200pC;
 - **CBPM:** Resolution of beam position measurement: 273nm@500pC, relative charge measurement: 0.02%@200pC;
 - Homemade DBPM, narrow-band for SBPM, base-band for CBPM.
- Applications in the commission of SXFEL-SBP:
 - The basis of the feedback system, beam orbit slow drift< 5μ m/day , < 10μ m/week ;
 - BPM based de-dispersion to ensure FEL;
 - Transverse matching to control the beam size.

