

# Fast Beam Based Alignment Using AC Corrector Excitations\*\*

Z.Martí, A. Franchi, E.Morales, G.Benedetti, U.Iriso, A.Olmos, J.Moldes



\*paper: <u>https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.012802</u>
\* Python & Matlab implementations: <u>https://gitlab.com/fbba</u>
<u>zeus@cells.es</u>

Z. Martí

**LERW-2020** 





Z. Martí

**LERW-2020** 



# It is needed to:

- Minimize multipole feed down effect, minimizes the corrector strength needed:
  - Optic & coupling errors due to Sextupoles.
  - Orbit errors due to Quadrupoles.
- Bring the machine closer to the model inbetween BPMs.



# Misalignments come from:

- Real: mechanical
- Apparent: electronic

# Several measurement methods:

- Beam2quad: Quad scan: Fast but Model dependent.
- **BPM2quad**: Quad&CM scan: Slow but Model independent.
  - There is a systematic error (orbit angle):





Instead of scanning sequentially in DC the CM, it uses the FOFB hardware:

- 10kHz Fast Acquisition Archiver
- AC CM excitation (quads **could** also be AC)

The FBBA measurable quantities are the same as for the normal **bpm2quad** BBA, but:

- The two planes are done at the same time ( $h_0$  and  $v_0$ )
- Optics coupling is taken into account -> skew magnets can also be aligned
- BPM gain and coupling, CM calibration and tilt are also considered



The method is valid for:

- DC quad
- AC quad (additional factor 2 faster)

And also:

- Normal quad
- Skew quad (sextupole yoke)

QUAD FBBA-DC BPM data example:



**LERW-2020** 



The method is a factor 2 faster if two different frequencies are used in each plane.

$$h_j(t_n) = \hat{h}_j \cos\left(2\pi f_h t_n + \psi_h\right)$$

$$v_j(t_n) = \hat{v}_j \cos\left(2\pi f_v t_n + \psi_v\right)$$

The offset is obtained combining the Fourier components of each BPM signal.

$$h_{j}(t_{n}) = \Re\left\{\left(\hat{h}_{j}e^{i\psi_{h}}\right)e^{i2\pi f_{h}t_{n}}\right\} = \frac{1}{2}\left(\langle h_{j}|f_{h}\rangle e^{i2\pi f_{h}t_{n}} + c.c.\right),$$
  
$$v_{j}(t_{n}) = \Re\left\{\left(\hat{v}_{j}e^{i\psi_{v}}\right)e^{i2\pi f_{v}t_{n}}\right\} = \frac{1}{2}\left(\langle v_{j}|f_{v}\rangle e^{i2\pi f_{v}t_{n}} + c.c.\right).$$

Z. Martí

**LERW-2020** 



In the linear regime, the BPM readings as a function of CMs change with coupling are:

$$\begin{cases} x_k(t) - x_k^0 = R_{kj}^{xx} (h_j(t) - h_0) + R_{kp}^{xy} (v_p(t) - v_0) \\ y_n(t) - y_n^0 = R_{np}^{yy} (v_p(t) - v_0) + R_{nj}^{yx} (h_j(t) - h_0) \end{cases}$$

### DC quad:

 $R_{kj}^{xx}$ ,  $R_{kp}^{xy}$ ,  $R_{np}^{yy}$  and  $R_{nj}^{yx}$ have 2 values: two sets of data are acquired. AC quad:  $R_{kj}^{xx}, R_{kp}^{xy}, R_{np}^{yy}$  and  $R_{nj}^{yx}$ vary with time: only one set of data.



Both for quads and skews the **solution** is:

$$\begin{cases} x_l^0 = \Re \left\{ \langle x_l | 0 \rangle \right\} + \mathcal{S} \left\{ \langle x_l | f_h \rangle \right\} \mathcal{M}_h + \mathcal{S} \left\{ \langle x_l | f_v \rangle \right\} \mathcal{M}_v \\ y_l^0 = \Re \left\{ \langle y_l | 0 \rangle \right\} + \mathcal{S} \left\{ \langle y_l | f_v \rangle \right\} \mathcal{M}_v + \mathcal{S} \left\{ \langle y_l | f_h \rangle \right\} \mathcal{M}_h \end{cases}$$

Where the observable ( $h_0$  and  $v_0$  are not) relative corrector offsets

are:

$$\begin{cases} \mathcal{M}_{h} = \frac{h_{0j}}{\hat{h}_{j}} = -\frac{\mathcal{D}_{x}\mathcal{D}_{yv} - \mathcal{D}_{xv}\mathcal{D}_{y}}{\mathcal{D}_{xh}\mathcal{D}_{yv} - \mathcal{D}_{xv}\mathcal{D}_{yh}} = \frac{\mathcal{Y}_{hk}}{\mathcal{X}_{hk}} \\ \mathcal{M}_{v} = \frac{v_{0j}}{\hat{v}_{j}} = -\frac{\mathcal{D}_{xh}\mathcal{D}_{y} - \mathcal{D}_{x}\mathcal{D}_{yh}}{\mathcal{D}_{xh}\mathcal{D}_{yv} - \mathcal{D}_{xv}\mathcal{D}_{yh}} = \frac{\mathcal{Y}_{vk}}{\mathcal{X}_{vk}} \end{cases}$$

BPM gain and coupling, CM calibration and tilt are taken into account.

9

Z. Martí

**LERW-2020** 



### DC Quad/skew (1&2 measurements)

$$\begin{cases} \mathcal{D}_{x} = \Re \left\{ \langle x_{k2} | 0 \rangle \right\} - \Re \left\{ \langle x_{k1} | 0 \rangle \right\} \\ \mathcal{D}_{y} = \Re \left\{ \langle y_{k2} | 0 \rangle \right\} - \Re \left\{ \langle y_{k1} | 0 \rangle \right\} \\ \mathcal{D}_{xh} = \mathcal{S} \left\{ \langle x_{k2} | f_{h} \rangle \right\} - \mathcal{S} \left\{ \langle x_{k1} | f_{h} \rangle \right\} \\ \mathcal{D}_{yv} = \mathcal{S} \left\{ \langle y_{k2} | f_{v} \rangle \right\} - \mathcal{S} \left\{ \langle y_{k1} | f_{v} \rangle \right\} \\ \mathcal{D}_{xv} = \mathcal{S} \left\{ \langle x_{k2} | f_{h} \rangle \right\} - \mathcal{S} \left\{ \langle x_{k1} | f_{h} \rangle \right\} \\ \mathcal{D}_{yh} = \mathcal{S} \left\{ \langle y_{k2} | f_{h} \rangle \right\} - \mathcal{S} \left\{ \langle y_{k1} | f_{h} \rangle \right\} \end{cases}$$

**AC** Quad (at f<sub>s</sub>: 1 measuremnt)

$$\begin{cases} \mathcal{D}_{x} = \mathcal{S}\left\{\langle x_{k}|f_{s}\rangle\right\}\\ \mathcal{D}_{y} = \mathcal{S}\left\{\langle y_{k}|f_{s}\rangle\right\}\\ \mathcal{D}_{xh} = \mathcal{S}\left\{\langle x_{k}|f_{h} + f_{s}\rangle\right\} + \mathcal{S}\left\{\langle x_{k}|f_{h} - f_{s}\rangle\right\}\\ \mathcal{D}_{yv} = \mathcal{S}\left\{\langle y_{k}|f_{v} + f_{s}\rangle\right\} + \mathcal{S}\left\{\langle y_{k}|f_{v} - f_{s}\rangle\right\}\\ \mathcal{D}_{xv} = \mathcal{S}\left\{\langle x_{k}|f_{v} + f_{s}\rangle\right\} + \mathcal{S}\left\{\langle x_{k}|f_{v} - f_{s}\rangle\right\}\\ \mathcal{D}_{yh} = \mathcal{S}\left\{\langle y_{k}|f_{h} + f_{s}\rangle\right\} + \mathcal{S}\left\{\langle y_{k}|f_{h} - f_{s}\rangle\right\}\end{cases}$$

**Example**: a 90° rotation ( $x \Rightarrow y \& y \Rightarrow -x$ ) changes  $D_x \Rightarrow D_y$ ,  $D_y \Rightarrow -D_x$ ,  $D_{xh} \Rightarrow D_{yh}$ ,  $D_{yh} \Rightarrow -D_{xh}$ ,  $D_{xv} \Rightarrow D_{yv}$ and  $D_{yv} \Rightarrow -D_{xv}$  leaves  $M_h$  and  $M_v$  unchanged: Any linear coupling is automatically taken into account.

The signed amplitude of a signal X at a frequency  $f_z$  is defined as:  $S \{ \langle x | f_z \rangle \} = |\langle x | f_z \rangle | \operatorname{sgn} \left\{ \cos(\psi_x^{(z)} - \psi_z) \right\}$ 



# Relative corrector offset fit:

$$\frac{h_{0j}}{\hat{h}_j}$$

For every BPM, a point in the  $\mathcal{X}_{hk}$  and  $\mathcal{Y}_{hk}$  plane is calculated. Then, the fit result is used to calculate the offsets of a single BPM-*l*:  $x_{l}^{0}$  and  $y_{l}^{0}$ .



**LERW-2020** 

11



**Frequency choice**: The CM waveforms have a limited effective kick as a function of the frequency:



A minimum of **0.5** A is needed to properly measure large offsets.

| Z. Martí | LERW-2020 | 28/10/2020 |
|----------|-----------|------------|



Also, we study the BPM noise as a function of the frequency. It gets better the higher the frequency, in the 0 Hz-18 Hz range:

We decided to use 6 Hz and 7 Hz for the vertical and horizontal plane respectively (0.5mm).



LERW-2020



For a DC quad change of 2.5A, the **acquisition time** is optimized:

1.5 seconds (3 s/meas.)



14



For a DC skew change of 2.5A, the acquisition time is optimized: 6 sec (12s/meas)

Z. Martí





For an AC skew change of 2.5A at 1.6Hz, the acquisition time is optimized: 6 sec (6s/meas)



**LERW-2020** 



## BBA vs FBBA:

- •The presented FBBA is ~30 times faster (10 min vs 5h) than the standard BBA.
- •The level of precision is similar: **1µm**.
- •There is a ±**10µm** unexplained difference.



**LERW-2020** 



For some BPMs, there are some systematic discrepancies effects **not** related to **quad hysteresis**...

The measurements were performed with (1) and without (2) quad hysteresis cycles before the measurement.



**LERW-2020** 



Regarding to **coupling** effects, they are of similar order.

It seems not very relevant except in the case of large coupling or for skew quads...



**LERW-2020** 



AC and DC magnet excitation give quite consistent results.

The AC is about 2 times faster, but there is a systematic difference (unexplained) of around 100µm.



**LERW-2020** 



We have performed random realistic simulations of FBBA at ALBA on skew quadrupoles and this effect is not expected.



|                                   | Horizontal    | Vertical    |
|-----------------------------------|---------------|-------------|
| Model rms quadrupole offset       | 150 µm        | 150 µm      |
| Mean difference between offsets:  |               |             |
| (Normal quad.) BBA vs model       | 15 µm         | 12 µm       |
| (Normal quad.) dc FBBA vs model   | 16 µm         | 12 µm       |
| (Normal quad.) ac FBBA vs model   | 16 µm         | 13 µm       |
| (Skew quad.) dc FBBA vs model     | 19 <i>µ</i> m | 9 µm        |
| (Skew quad.) ac FBBA vs model     | 19 <i>µ</i> m | 6 µm        |
| (Normal quad.) dc FBBA vs BBA     | $4 \ \mu m$   | $2 \ \mu m$ |
| (Normal quad.) ac FBBA vs BBA     | $4 \ \mu m$   | 3 µm        |
| (Normal quad.) ac FBBA vs dc FBBA | $0 \ \mu m$   | 3 µm        |
| (Skew quad.) ac FBBA vs dc FBBA   | 0 µm          | 5 µm        |

### Z. Martí

#### **LERW-2020**



- Using the FOFB hardware, we have developed a method to perform quadrupole BBA which is **30times faster** than standard BBA and achieves even better precision (not sure about accuracy).
- The FBBA allows to perform simultaneous analysis of both planes, and accounts for any level of optics coupling, BPM roll and CM tilt.
- This novel approach allows also a skew quadrupole BBA (sextupole yoke).
- Some small differences between AC and DC modes remain unexplained (~30µm for the quads case, and ~100µm for the skews case).