

Use of RF-SoCs in Accelerator Instrumentation

A High Speed Digitizer (HSD) for the ALS based on the Xilinx ZCU111 demo-board

Eric Norum International Beam Instrumentation Conference (IBIC)

Xilinx RF-SoC

Multiple generations of devices ADCs:

- Differential inputs
- Maximum sampling frequencies from 2.5 to 5 GHz
- Resolution of 12 or 14 bits
- Channel counts from 2 to 16.
- Higher speeds use two converters and interleaved sampling
- Optional internal demodulation/downsampling/decimation

DACs:

- Update frequencies from 6.554 to 9.85 GHz
- 14 bit resolution

Xilinx RF-SoC – Issues

- Complex hardware/firmware/software procedure to obtain synchronized sampling
- Foreground and background ADC calibration
 - Foreground takes place at power-up and requires no signal at ADC inputs
 - Background continues during operation and requires signal with restrictions on power and bandwidth
- High quality reference clock needed
 - E.g. 12 bit converter sampling a 500 MHz signal
 - To have less than 1 count error the sampling clock jitter must be less than 156 fs
 - A 14 bit converter would require a clock with less than 39 fs jitter

HSD – Platform – ZCU111

- Based on first generation device (ZCU28DR)
 - 8 12-bit ADCs
 - 4.096 GHz maximum sampling frequency
 - 8 14-bit DACs, to 6.554 GHZ
- 1000 Base-T Ethernet
- 4xSFP28 (up to 25 Gb/s each)
- DDR4 with peak transfer > 20 GB/s
- RF synthesizers

Analog Front End

- MEMS 4PST RF switch
 - DC
 - AC
 - ADC background calibration training signal
 - DC calibration signal
- Programmable gain (-6 dB to +26 dB)
- DC to 7 GHz single-ended to differential amplifier
- DC to 4.5 GHz programmable-gain amplifier

Analog Front End

- 8 independent channels
- Connector matches ZCU111 RF I/O
- Board shown before installation of RF shields

Calibration Procedure

Performed on every change of gain or coupling

- 1. Set amplifier to desired gain, MUX to calibration DAC
- 2. Set DAC to 0 V
- 3. Acquire and average to obtain value A
- 4. Set DAC to value corresponding to near full-scale ADC reading
- 5. Acquire and average to obtain value B
- 6. If new coupling is AC, open all MUX switches then acquire and average to obtain value C
- 7. Set MUX to training signal
- 8. Enable converter internal background calibration, then wait.
- 9. Lock values and disable background calibration
- 10. Set MUX to DC or AC coupled input signal

Unit Conversion (ADC counts to Volts)

DC-coupled mode: $V = (V_{cal} \div (B - A)) \times (ADC - A)$

AC-coupled mode: $V = (V_{cal} \div (B - A)) \times (ADC - C)$

- Amplifier input bias current blocked in AC-coupled mode
- Scaling done in IOC

AFE - Bandwidth

Analog front-end (AFE) components add filtering compared to default ZCU111 with only low frequency balun

Noise Performance

Power spectral density with no input for various AFE gain settings

- Counts are based on 16-bits even though ZCU111 is 12-bit ADC
- So 48.2 counts in the plot is about 3 counts for 12-bit ADC

Complete Chassis

Features

- Front panel display
- Display control button
- Reboot/Recovery button
- 8 SMA connectors
- USB Console/JTAG
- RJ45 1000BaseT ethernet
- Optional rear panel interlock output

Firmware

2 versions of firmware:

- Fast Scope (FS)
- Bunch Current Monitor (BCM)
- Versions are identical except for the sampling frequency and the acquisition logic

Firmware Version	Sampling Frequency	Acquisition Logic
Fast Scope (FS)	f _₨ x 8 (~4GHz)	 EVR or self-triggered mode Continuous or segmented acquisition
Bunch Current Monitor (BCM)	f _₨ x 80/11 (~3.6GHz)	Computes and stores sum at each point over a 'turn', with interleaved sampling similar to sampling oscilloscope

System Architecture and EPICS Integration

Control System Network

- Timing Event Link provides synchronization to ALS clocks and triggers
- Ethernet UDP interface to central EPICS soft IOC

	SR01:HSD1:								
Trigger Mask				∕las	k	Inputs			
0	0	0	0	0		0 Disarm Arm 1 Single View Independent			
0	0	0	0	0		0 Disarm Arm 2 Single View Independent			
0	0	0	0	0		0 Disarm Arm 3 Single View Independent			
0	0	0	0	0		0 Disarm Arm 4 Single View			
0	0	0	0		0	O Disarm Arm 5 Single □ View Independent □			
0	0	0	0		0	0 Disarm Arm 6 Single View Independent			
0	0	0	0		0	0 Disarm Arm 7 Single View Independent			
0	0	0	0		0	0 Disarm Arm 8 Single View			
						View 1-4 View 5-8 View All			
T	T	T	T	T	T				
i	i	i	Ì	Ì	i				
g	g	g g	g g	g	g				
e	e	e	e	e	e	Trigger Overvoltage!			
Ľ	Ľ	Ľ	Ľ	Ľ					
В	В	В	В	В	В				
s	s	s	S	s	s	Delay From Event			
7	6	5	4	з	2	(~8ns/step)			
						Timing System Event Trigger Bus 2 15625			
1	0	0	0	0	0	Booster start (10) Trigger Bus 3 25587			
0	0	0	0	0	0	DR Islandian Kiskar (00)			
0		U	U	U	0				
	0		U	0		B extraction kinker (49)			
	U	U		Ū	0	CD EXITADUOT NICKEF (48) Trigger Bus 6 1			
	0	0	0			Poet SP Injection (S2) Trigger Bus 7 1			
	0	0	0	0	0	Post SR Injection (68)			
0	0	0	0	0	0	Post on Injection, continuous (70)			
0	0	0	0	0	0	Heartbeat (122)			

Fast Scope – Sampling Schemes

- Direct Sampling
 - Single buffer, up to about 131000 points
- Segmented Sampling
 - 2048 short segments (50 points each)
 - 512 long segments (498 points each)
 - Arbitrary spacing between segments

Fast Scope – Direct Sampling

- Direct sampling of wall current monitor signal just downstream of ALS electron gun
- Shows relative charge in each bunch
- The time base is relative to 'gun on' timing system event
- The gun is emitting four bunches at 8 ns spacing.

Segmented Sampling Beam Charge Monitor Example

- Allows for saving data only when signal of interest is present
- Adjustable time between segments
- Gap here is set to acquire booster ring turnby-turn values

Integrating Current Transformer (ICT) Raw Output

Segmented Sampling -Beam Charge Monitor Example

- Integrate the area under the pulses in the preceding image to obtain charge in booster.
- Gap can differ through the acquisition
- Plot shows turn-by-turn charge for the first 10 turns following injection and then one turn every millisecond for the next quarter second.

Sampling Scope -**Bunch Current Monitor**

- 3.6 GHz Sample Rate $(F_{RF}*80/11)$
- Sampling scope mode
- Effective 40 GHz sampling rate
- Connect to button or stripline to measure current in each storage ring bucket

International Beam Instrumentation Conference (IBIC), 13-17 September 2021

200

100

0

n

1500

1000

Time [picoseconds]

500

2000

Bunch Current Monitor

Useful for monitoring:

• Fill patterns

Injection

Triggering Schemes - Independent or Grouped

- Individually triggered by input channel
- Off any timing system event
- Software triggered
- Multiple channels can be triggered together

Conclusions

- Embedded event receiver allows sampling to be synchronized to the ring RF and provides very flexible triggering
- Meeting timing constraints with full speed raw ADC values is challenging
- ADCs tightly coupled to programmable logic is a great platform for developing instrumentation and control applications
- Nine months of trouble-free operation of six units, more to be commissioned soon

Acknowledgements

- Gregory Portmann
- Jonah Weber
- Jacqueline Bell

