

Abstract

There is an ongoing study at Iranian Light Source Facility (ILSF) aims to determine control solutions for a variety of diagnostics tools that will be placed at various locations around the facility. In this paper, an overview of the possible control solutions with a focus mostly on the low-level part of the control system is reported.

Tool	Location	Qty.	Controllabl
FS/ OTR	Linac Diagnostics line, LTB,	20	Stepper Motors, CCD
	Booster, BTS, Storage ring		Com
SRM	LTB, Booster, BTS, Storage	9	Streak Camera
	ring, Diagnostics beamline		

С	ontrol Requirements a	nd IOC Platform for the	Camera System	
Camera	Interface	Data	Frame	IOC
		Rate	Grabber	
CCD Camera	GigE	320 Mbps	No	PC
Streak Camera	CoaXPress	2000 Mbps	Yes	PC

www.PosterPresentations.con

STUDY OF SOLUTIONS FOR INTERFACING ILSF BEAM DIAGNOSTICS TOOLS TO CONTROL SYSTEM

P. Navidpour⁺, F. A. Mehrabi, S. Mohammadi Alamouti Iranian Light Source Facility, Institute for Research in Fundamental Sciences, Tehran, Iran

Introduction

The ILSF synchrotron light source is under design and construction and now that the basic design phase of the diagnostics subsystems is finished, our job in the control and diagnostics group is to study and document the possible control solutions for each diagnostics tools. However, the study is still in progress and our choices are not finalized yet. The diagnostics tools we will discuss in this paper are Fluorescent Screen (FS) and Optical Transition Radiation (OTR) systems, Beam Loss Monitors (BLM), Fast Current Transformer (FCT), Integrating Current Transformer (ICT), Faraday Cup (FC), and Direct Current Transformer (DCCT). These tools are categorized into three sections and the control solution is discussed for each one.

An Example of the Possible Solution for Interfacing Diagnostics Tools with Analog Output to the Control System

Control Requirements and IOC Platform for the Camera System

Tool	Location	Qty.	Controllable Component	IOC
FCT	Linac, LTB,	9	Oscilloscope	PC
	BTS, Storage Ring		4GSa/s, 1GHz	
ICT	LTB	2	Oscilloscope	PC
			2GSa/s, 1GHz	
FC	Linac Diagnostics line	1	Oscilloscope	PC
			2GSa/s, 200MHz	
DCCT	Booster, Storage Ring	2	18bit Digital Multimeter	PC

le Component Cameras, Single-Board nputers ra, CCD Cameras

Location of BLM sensors and their IOC Platform

Location

Near to the booster dipole magnets Near the storage ring dipole magnets Downstream of the RF cavities Near to the insertion devices Next to the collimators and scrapers

Summary

We presented our progress in the ongoing phase of the study of possible control solutions for some of the ILSF diagnostics tools. We presented simplified layouts of control solutions for camera based diagnostics tools, mover systems of FS/OTR and scrapers, BLM system, and analog diagnostics tools. The next step is to choose between the solutions studied, and build prototypes and test benches accordingly.

Iranian Light Source Facility

BEAM LOSS MONITORS

An Example of the Possible Solution for Interfacing Beam Loss Monitors to the Control System

Qty.	IOC
55	MTCA
100	MTCA
6	MTCA
7	MTCA
4	MTCA