WEPP13

BIC+ Bunch Arrival Time Measurement System Test for SHINE 2021

Authors: Y.M. Zhou, S.S. Cao, J. Chen, Y.B. Leng Shanghai Advanced Research Institute, CAS, Pudong, Shanghai 201210, P.R. China

Abstract

To achieve high-precision synchronization between electron bunches and seeded lasers, a femtosecond resolution bunch arrival time measurement system (BAM) is required for SHINE (Shanghai High repetition rate XFEL aNd Extreme light facility). The BAM system is com-posed of three modules. Bunch signal from the cavity probe is mixed with a reference signal from the facility synchronization clock in the RF front-end. Then, the generated IF signal is collected by the digital acquisition system. In the pre-research stage, three sets of cavity probes with different frequencies and three sets of analog front-ends with different schemes were performed. However, only cavity probes with the attenuation time constant of 200 ns were installed on the beam experimental test platform. Each sub-module of the BAM system will be tested and evaluated, and the system will be used to measure bunch arrival time and bunch flight time. The first beam experimental results will be presented in this paper.

System structure of bunch arrival time measurement system

RAM	
*	

	•	•	•	•	
И	01	'IV(nt	IOr	1:
					• •

➢Test the performance of each sub-module >Measure the bunch arrival time and flight time with the

zhouyimei@zjlab.org.cn

prototype

➤Guide the direction of optimization

'hree nodules	Characteristics
avity probe	Function: coupling out beam information (including charge, beam arrival time and position) Parameters: three sets of cavity probes with different frequencies designed, but only CBPM-200ns was installed CBPM200-02 REF cold test results: 5.773GHz, BW 1.49MHz, Qload 3877, decay time 214ns (S. S. Cao et al., "Design and Test of CBPM Prototypes for SHINE", IBIC'20)
RF front-end	Function: filter, amplify, and down-convert the RF signal from the cavity probe to an IF signal Parameters: three sets of analog front-ends with different design schemes performed, the noise floor of prototype #3 is the lowest prototype #3 REF: lab testing (std~31.5), beam testing (std~13.2) (Y.M. Zhou et al., "Prototype Design of Bunch Arrival Time Measurement System Based on Cavity Monitor for SHINE", IBIC'20; J. Chen et al., "Development of the Prototype of the Cavity BPM System for SHINE", IPAC'21)
igital cquisition ystem	 Function: Real-time online data processing in FPGA to extract beam position information and phase information Parameters: technical requirements: Sampling rate>500MSPS, BW>60MHz, ENOB>9bits Beam experiment use: QT7135 developed by Queentest company (1GSPS, 1.2GHz, 12bits)

Experimental schemes and measurement results

	prototype #1	prototype #2	prototype #3
Gain / dynamic	$-3 \sim 52 \text{ dB Gain} / 55 \text{ dB DR}$	60dB Gain / 60 dB DR (X,	POS DR: 80 dB
range:	(X, Y, Z) -22 ~ 3 dB Gain / 25 dB DR (REF)	Y, Z) 19dB Gain / 40dB DR (REF)	KEF DR: 30 dB
Adjustable gain	1dB / step	1dB / step	0.25dB / step
Crosstalk	< - 61 dB	< -62 dB	< -66 dB
Noise Figure	REF: 0.059 %	REF: 0.056 %	REF: 0.032 %
Local oscillator phase noise	~ 36 fs (476MHz clock)	~ 20 fs (476MHz clock)	~ 7 fs rms (5712MHz clock)

Conclusion

➤Successfully construct a BAM system

➤Complete the test of each sub-module

► Measure the bunch arrival time and flight time, BFT

resolution reached 6.9fs @ 500pC

