TWO COLOR BALANCED OPTICAL CROSS CORRELATOR TO IBIC+ SYNCHRONIZE DISTRIBUTED LASERS FOR SHINE PROJECT 2021

WEPP05

Chunlei Li, Lie Feng, Jingguo Wang, Wenyan Zhang, Xingtao Wang, Bo Liu Shanghai Advanced Research Institue, Chinese Academy of Science, Shanghai, China

Abstract

- High precision timing synchronization systems are critical for FELs because X-ray temporal duration is highly sensitive to the overall synchronization between the injector laser, the Linacs, and the bunch compressors.
- It is crucial to synchronize various slave laser

Schematic of Synchronization System for Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE)

oscillator (drive laser, seed laser, pump-probe laser) to the master reference laser with a long term stability of better than 10fs.

- Two color balanced optical cross correlator (TCBOC) for locking slave laser to master laser is under developing.
- TCBOC with a sensitivity 6.31mV/fs is being tested by linking a commercial Ti:sapphire oscillator to a locally installed timing reference source.

Theoretic Frame of TCBOC

Experimental Setup

Experimental Results

Figure 6: Measured 527nm sum frequency signal intensity on a balanced detector (Left); Measured difference signal by two color balanced optical cross correlator (Right). The slope of red part curve is 6.31mV/fs around zero crossing.

FH: Fundamental harmonics of input pulses; DM: Dichroic mirror; HM: high reflective mirror; GVD: Silica slab for group velocity delay.V1 and V2: output voltage from photodetector.

Supposing two Gaussian-shaped input pulses with their intensities $I_1(t)$ and $I_2(t)$, the intensity $I_{sum}(t)$ of generated sum frequency light is expressed by the convolution of the two input pulses:

 $I_{sum}(t) = \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} exp\left\{-\frac{(t - \Delta t)^2}{2(\sigma_1^2 + \sigma_2^2)}\right\}$

Intensity changes $I_{sum}(t)$ of sum frequency pulse is a measure for the timing changes.

- Δt is relative timing between the two input pulses;
- σ_1, σ_2 are relative to the full width at half maximum (FWHM) of input pulses according to

FWHM = $2\sqrt{2ln2}\sigma \approx 2.354\sigma$

The repetition period difference ΔT between the two pulse trains

$$\Delta T = \frac{1}{f_M} - \frac{1}{f_M + \Delta f} = \frac{\Delta f}{f_M^2 + f_M \Delta f} \approx \frac{\Delta f}{f_M^2}$$

• Δf is the frequency difference;

Figure 3: Experimental setup of two color balanced cross correlator

- Onefive Origami-15, 1550nm±10nm pulses, 17.7mW;
- Ti:sapphire laser oscillator(Micra, Coherent) ,800nm±40nm, 45mW;
- A free space balanced amplified photodetector (PDB210A/M, Thorlabs) with gain of 500×10³V/A;
- Beta barium borate (BBO) with a thickness 5mm;
 Phase match angle is 22.2 Degree; collinear type- I
 configuration(ooe); sum frequency signal of 527nm[3].

- Select the red part of the curve, which given a voltage difference 0.4V and time difference 63.3fs;
- Extract a slope around the zero crossing of 6.31mV/fs for the feedback control loop;
- Further investigation input pulse length and changing the group delay glass.

Summary

- An two color balanced cross correlator was developed and tested, which will be used to phase lock two individual laser systems operating at different center wavelength and different repetition rates.
- Difference signal of sum frequency have been obtained, which shows a sufficient slope around zero crossing for phase locking.
- The next step is to make short and long term stability measurements with an identical out of loop TCBOC.

Acknowledgements

• f_M is master laser oscillator frequency, $\Delta f \ll f_M$;

Figure 2: Pulse sliding due to frequency difference.
 ■ Master laser f_M is a harmonics of the slave laser f_s;
 ■ 1550nm laser oscillator is 238MHz;
 ■ 800nm Laser oscillator is 79.33MHz;

Recorded time scale in oscilloscope has to be converted to the relative time scale between the pulses by a factor ξ

Figure 4: Schematic of TCBOC feedback control system to synchronize the pulse trains of two ultrafast laser at different wavelength [1]

Figure 5: Sensitivity comparison between TCBOC and a microwave phase detector. Sensitivity improved from tens of $\mu V/fs$ to several mV/fs.

This work was supported by Shanghai Municipal Science and Technology Major Project with Grant No. 2017SHZDZX02.

References

[1] Kemal Shafak, "Large-scale laser microwave synchronization for attosecond photon science facilities", PhD thesis, *Universität Hamburg*, Hamburg, Germany, 2017.

[2] S. Schulz et al., "An optical cross correlation scheme to synchronize distributed laser systems at FLASH", in *Proc. 11th European Particle Accelerator Conf. (EPAC'08)*, Genoa, Italy, June, 2008, paper THPC160, pp. 3366-3368.

[3] Chunlei Li et al., "Measurements of ultraviolet FEL seed laser pulse width broading in thin β -BBO crystal", in *Proc. 12th International Particle Accelerator Conf. (IPAC'21)*, Campinas, SP, Brazil, May. 2021, paper WEPP20.