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Abstract

The European Spallation Source, currently under construction in Lund,
Sweden, will be the world’s most powerful neutron source. It is driven by
a proton linac with a current of 62.5 mA, 2.86 ms long pulses at 14 Hz.
The final section of its normal-conducting front-end consists of a 39 m
long drift tube linac (DTL) divided into five tanks, designed to accelerate
the proton beam from 3.6 MeV to 90 MeV. The high beam current and
power impose challenges to the design and tuning of the machine and the
RF amplitude and phase have to be set within 1% and 1◦ of the design
values. The usual method used to define the RF set-point is signature
matching, which can be a challenging process, and new techniques to
meet the growing complexity of accelerator facilities are highly desirable.
In this paper we study the use of ML to determine the RF optimum am-
plitude and phase, using a single pass of the beam through the ESS DTL1
tank. This novel method is compared with the more established methods
using scans over RF phase, providing similar results in terms of accuracy
for simulated data with errors. We also discuss the results and future
extension of the method to the whole ESS DTL.

Introduction

• The European Spallation Source (ESS) is a state of the art neutron
science facility under construction in Lund, Sweden [1].

• As the machine is expected to deliver beam of high current and power, a
primary concern is to avoid slow beam losses, as these lead to radiation
activation of surrounding equipment.

• A simple model of the ESS linac can be seen in Fig. 1.

• The requirement for accuracy of the RF set point in the DTL
is to be within 1% in RF amplitude and 1◦ in RF phase [1].

Figure 1: Simplified figure of the ESS linac.

Simulations

• Simulations of DTL Tank 1 done in OpenXAL [5].

• Envelope simulations were used, rather than trajectory tracking, which
has proved to be sufficient information for RF tuning.

• ML Networks trained with perfect data sets, with no errors deviating
from the lattice design files.

• Networks were then tested with new datasets with the errors shown in
Table 2.

Table 1: The different types of errors used in simulations and their
corresponding magnitude.

Error Type Magnitude

BPM ∆s ±100µm
BPM ∆φ ±1◦

RF Amplitude ±2%
RF Phase ±0.5◦

RF Phase Scan

• By comparing two BPM phases we can get a fast measurement which
is proportional to the time-of-flight.

• It is important to stress that this measurement is relative and that ex-
tracting the absolute values of the energy is not an easy task. For
this technique, using only the relative phase changes has proven to be
enough [2, 3, 4].

• As the BPM’s measured phase is closely dependent on the energy of the
beam, scanning RF amplitude and phase in a cavity and plotting out the
resulting phase differences will give rise to different curves depending
on the proximity to the ideal set point for the cavity.

• RF phase was scanned to produce signature curves shown in Fig. 2.

Figure 2: The phase curves for different RF amplitude and input energy
set points. BPM phases simulated as comparison between two BPMs
in the first DTL tank in the ESS linac.

• Identifying these types of signatures is the basis of most established
techniques for cavity tuning [2, 3, 4].

Single Shot Measurement

• With the large number of BPMs within the ESS DTL section, a restruc-
turing of the data can be done such that we can see distinct signatures
for each cavity setpoint in amplitude, phase and beam input energy.

• We look at BPM phase differences, not against RF phase, but against
each diagnostic output, the pairing of BPMs. Figure 3 shows an ex-
ample of this type of plot, where each line represents a cavity set point
and is measured in a single pass through the machine, without scanning
any parameter.

Figure 3: BPM phase differences for each possible BPM coupling, with
the different plots each corresponding to a single cavity set point.

• From here we encounter the same problem to be solved as with the
phase scan data, needing to accurately identify these new signatures.
The nature of the signatures in this data format leaves ML uniquely
equipped for the task.

• This new data format was used to produce the results presented here.

Machine Learning

• Machine learning algorithms come in many forms and can solve many
distinct problems using varying network structures, definitions of loss
and optimization algorithms [6].

• We compare two types of network, a traditional linear regression struc-
ture, and a newer decision tree boosting model called XGBoost.

Linear Regression

• This network was defined using the python library Keras [7].

• Our loss function was mean squared error and our optimization algo-
rithm was ADAM [8].

• Optimization of the network structure and training parameters was done
iteratively, looking at generalized performance as the figure of merit.

• Through this process we arrived at a 10-layer structure with an 160-160-
80-80-40 symmetrical neural layout, and a final output layer of three
neurons, which was trained for 20 000 epochs with a learning rate of
0.00001.

XGBoost

• The modern ML system of XGBoost (eXtreme Gradient Boosting) is
an open source gradient boosting model, which has proven extremely
powerful for solving varied, nonlinear problems [9].

• A gradient boosting ML system uses an ensemble of many decision trees
in order to improve the final predictions, and commonly a regularized
loss function which penalises increasing complexity of the model as well
as the usual error of predictions.

• Figure 4 shows a simplified model of the principle of decision tree en-
sembles.

Figure 4: Simplified figure of the working principle of a tree ensamble
network. In this case, the final prediction of the ensamble is a summa-
tion of the predictions of individual trees [9].

• For the results produced here an ensemble of 10000 trees was used,
each with a max allowed depth, the amount of branching criteria, of
20. A learning rate factor of 0.0001 was applied and an early stopping
system was also used during training, forcing the training to halt if the
generalized performance of the ensemble network did not improve over
a period of 500 iterations.

Results

• Table 2 shows three standard deviations (3σ) and the mean (µ) of
the difference between the predicted and expected value for the RF
Amplitude (A) and phase (φ), as well as for the input energy (E).

• We see good performance in the energy predictions, but both methods
fail to produce the sought results in both phase and amplitude.

• The variation in the single shot signatures as a function of phase is
quite small, so networks struggling to distinguish between these is un-
derstandable.

• XGBoost only slightly outperforms the more traditional linear regressor,
but remains far outside the limit in the phase prediction.

Conclusions

• While both methods may fail the limits for operation at this stage of
investigation, there are still many factors which could prove this method
more reliable than suggested by these results.

• The error data set produced may have been pessimistic in the predic-
tions of one or many of the factors included and further optimization
of the meta parameters for the training of the networks could reveal
better results in the future.

• The single shot nature of the data could allow for updated tuning infor-
mation during operation of the machine, as well as long term tracking
of drifts on the RF parameters.

• Further applications of this online tuning information could be devel-
oped in the future, for use in the ESS control room or elsewhere.
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Table 2: Three standard deviations in difference between predicted and correct values for the RF Amplitude and phase and the input energy. Results shown for both linear regression (LR) and XGBoost (XGB) network structures.

Data Set 3σA [%] 3σφ [◦] 3σE [%] µA [%] µφ [◦] µE [%]

No Errors
LR 0.075 0.051 0.045 0.002 0.000 0.002

XGB 0.891 1.755 0.153 0.025 -0.013 0.002

All Errors
LR 4.002 5.568 0.804 -0.013 -0.068 -0.009

XGB 3.171 5.217 0.750 0.022 0.038 0.016


