
Template ID: conceptualizingcobalt  Size: 48x36

There is no straightforward expression for anticipating the energy deposition of a 
beam with high power density within accelerator elements, because the deposited 
energy depends on many beam properties as well as on the material properties of 
the beam-interceptive device and the capabilities of its cooling system.
Dedicated Monte Carlo simulations and thermo-mechanical calculations in MCNPX 
[4] and ANSYS [5], respectively, are part of the detector design workflow at ESS. 
However, many relevant beam- and material-related parameters have to be taken 
into account; in addition, both simulations and calculations are time-consuming. 
For instance, on a standard laptop it takes several hours to compute within the SPK 
IBS [6] the temperature trend in fig.1. 

FIG.1 - Temperature as a function of the time, calculated in ANSYS for the 
graphite bulk of the SPK IBS (50𝝻s long proton pulses, 6 mA, 14 Hz and 73 MeV).

Dedicated experiments and controlled damage tests are usually expensive and not 
always an option. Therefore, in this contribution a machine-learning based method 
for the prediction of temperature trends within beam-interceptive devices was 
developed, not for detector design purposes, but for fast time-series forecasting.
 

The predictions of temperature trends in beam-interceptive devices of the ESS 
linac rely on the so-called Long Short-Term Memory (LSTM) model [7]. 
An LSTM is a processing model of artificial Recurrent Neural Networks (RNNs) 
that nowadays is widely used in the field of deep learning for processing not only 
single data points, but especially sequential data e.g. weather, financial data, audio 
and text. 

The method is written in python 3; the main library for developing and testing the 
method is Keras of TensorFlow 2. The training of the RNN is performed starting 
from the MCNPX/ANSYS database, available from past workflow for detector 
design. The MCNPX/ANSYS database includes the temperature trends in the bulk 
of the beam-interceptive devices as a result of the seven possible beam modes at 
ESS (see the list in tab.2). In all the tests, the proton beam has a Gaussian 
distribution in both transverse planes and has always the same beam dimensions. 
The ANSYS data are interpolated and normalized (between 0 and 1). The Adaptive 
Moment Estimation optimizer (ADAM) [8] is used. Tests are performed with 20 
epochs and the loss was calculated as Mean Square Error (MSE). 

TAB.2 - List of beam modes in the MCNPX/ANSYS database
 (C = commissioning, T = tuning).

”Where there is great power [density], there is great responsibility” (cit. 
Winston Churchill, 1906). The concept holds true especially for 
beam-intercepting devices for the ESS linac commissioning. In 
particular, beam-intercepting devices will be subject to challenging 
beam power densities, stemming from proton energies up to 2 GeV, 
beam currents up to 62.5 mA, pulses up to few milliseconds long, and 
repetition rates up to 14 Hz.
Dedicated Monte Carlo simulations and thermo-mechanical 
calculations are necessarily part of the design workflow, but they are 
too time-consuming when in need of rapid estimates of 
temperature trends.
In this contribution, the usefulness of a Recurrent Neural Network 
(RNN) was explored in order to forecast (in few minutes) the bulk 
temperature of beam-interceptive devices. The RNN was trained 
with the already existing database of MCNPX/ANSYS results from 
design studies.
The feasibility of the method will be exemplified in the case of the 
Insertable Beam Stop within the Spoke section of the ESS linac.
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Methodology

Results

Temperature trends in beam-interceptive devices were predicted with an 
RNN combined with the LSTM model. The results after 73 MeV protons onto 
the SPK IBS are reported as representative example, with 6 mA proton beam 
current, 14 Hz rate and 50 𝜇s long pulses. 
Tests were conducted to determine the useful number of training and 
validation points while keeping the processing time of few minutes and the 
uncertainty on the temperature below 20 oC. Tab.3 reports three indicative 
tests. In the case C, one can notice that just three pulses actually calculated 
in ANSYS are enough for the model training. 

TAB.3 - Summary of tests to determine the number of training and 
validation points.

 

FIG.2 - The training loss as well as the validation loss, as calculated for the 
case C in tab.3 with the ADAM optimizer. 

Finally, the comparison between the ANSYS values and the LSTM model 
results are shown at the top of fig.4, with the difference between the two 
datasets plotted at the bottom of fig.4.

It is possible to observe that the LSTM model predicts the rising and falling 
periods with uncertainty less than 2oC, whereas in correspondence of the 
local maxima, the prediction can be off by up to 16oC. 
More advanced pre-processing, interpolation and segmentation will be 
explored with the aim of reducing the discrepancies at local maxima. 

The results are useful for the following reasons: 
1) The saturation temperature is obtained within approx. 1 minute, so 

several hours of computational time can be spared. 
2) The resulting temperature values for the rising and falling periods can 

be used for further calculations of temperature trends for pulses shorter 
than the 50 𝜇s (i.e. the pulse duration hereby considered for the example 
in fig.4). 

3) The results set the reference limit after 14 Hz, thus they can be used to 
infer temperature trends at lower repetition rates. 

Conclusions & Outlook

Introduction

The European Spallation Source (ESS) in Lund (Sweden) is currently one of 
the largest science and technology infrastructure projects being built today. 
The facility will rely on the most powerful linear proton accelerator ever built, 
a rotating spallation target, 22 state-of-the-art neutron instruments, a suite 
of laboratories, and a supercomputing data management and software 
development centre [1]. The ESS accelerator high-level requirements are to 
provide a 2.86 ms long proton pulse at 2 GeV, with a repetition rate of 14 Hz. 
This corresponds to 5 MW of average beam power, with a 4% duty cycle on 
the spallation target [2]. 

A comprehensive suite of beam instrumentation and diagnostics [3] has 
started to support the commissioning and operation of the 
normal-conducting linac (NCL) section of the ESS linac. Additional devices 
and enabling systems are going to be deployed in the superconducting linac 
(SCL) section, as well as in the transport line to the tuning dump and to the 
spallation target. 
In particular, the Beam Diagnostics Section is responsible for the design, 
procurement, test and operation of all the bulkiest beam-interceptive 
devices in both the NCL and SCL linac sections (see the list in tab.1). 
The beam instrumentation plays the most important role in the machine 
protection system of the ESS proton linac, by monitoring the beam 
parameters and stopping the beam operation before damages may occur.

TAB.1 - List of the bulkiest beam-interceptive devices in the ESS proton 
linac, as well as mean and peak beam power at the devices' locations. 

(FC = Faraday cup, IBS = Insertable Beam Stop). 

Abstract
The protection of the machine and beam-interceptive diagnostics devices 
is of paramount importance in high power accelerators. For quick 
estimation of temperature trends in beam-interceptive devices, there is no 
straightforward alternative to the standard simulation tools. Therefore, this 
paper proposed a machine-learning based model that can predict bulk 
temperatures in beam-interceptive devices within few minutes. The 
predictions are made by means of RNNs and in particular the LSTM 
processing model.

The data training and benchmarking was performed with data available 
from the MCNPX/ANSYS calculations from the design workflow previously 
outlined in [6]. The results show that the Machine-Learning based method 
accurately computes the rising and falling periods with an error below 2 oC. 
Local maxima come with a prediction error below 20oC. More advanced data 
pre-processing, interpolation and segmentation techniques will be 
considered to reduce such discrepancy. The method can be used for 
extrapolating temperature trends e.g. at shorter pulse durations and lower 
repetition rates.
In the future, the method can be further expanded to build extensive 
look-up tables for routine checklists, develop a low-latency network for 
ML-based machine-protection systems or virtual diagnostics.
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FIG.4 - (Top) Comparison between temperature values calculated in 
ANSYS and those predicted by the ML-based method. 

(Bottom) Temperature difference between the ANSYS and the ML-results.
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Device Mean power Peak Power

LEBT FC 0.005 W 0.0002 MW

MEBT FC 16 W 0.23 MW

DTL2 FC 170 W 2.43 MW

DTL4 FC 323 W 4.63 MW

SPK IBS 411 W 5.88 MW

MBL IBS 1575 W 22.5 MW

Beam mode Current (mA) Pulse (us) Rate (Hz)

Probe 6 5 1

Fast C 6 5 14

RF test 6 50 1

Stability test 6 50 14

Slow C 62.5 5 1

Fast T 62.5 5 14

Slow T 62.5 50 1

A B C

Training points 7k 14k 21k

Validation points 10k 20k 30k 

Pulse number 1 2 3

Processing 46 sec 58 sec 62 sec

ANSYS vs. LSTM 30 oC 26 oC 16oC

https://europeanspallationsource.se/about
https://iopscience.iop.org/article/10.1088/1402-4896/aa9bff/pdf
http://dx.doi.org/10.18429/JACoW-IBIC2017-MO2AB2
http://www.ansys.com
https://doi.org/10.18429/JACoW-IBIC2020-WEPP07
https://arxiv.org/abs/1412.6980

