

Application of the CORIS360 Gamma-ray Imager at a Light Source

<u>Y. E. Tan</u>, D. Boardman, L. Chartier, M. Guenette, J. Ilter, G. Watt

ANSTO

Science. Ingenuity. Sustainability.

Gamma-ray Imager

- Single CLLBC Scintillator as the detector.
- Compressed sensing
- Radiation image reconstruction by intensity measurements through the use of internal rotating masks.

Introducing the world's most advanced radiation imaging solution

Fast, 360° × 90° gamma-ray imaging across the full energy range, for improved decision making

Interpreting Data Detector stats. Dead time on the detector. > File View Tools Hel n 💿 庐 (j) Name: SR13_DN Samples: 224 Elapsed time: 00:07:08.37 Description: SR13 ID at 6.65 mm gap. 30 mA. 50% is bad... **Radiation Image Overlay** 🔀 🚼 🍭 🛲 -🛈 View: Radiation overlay 🗸 Counts per second in the energy ROI. Energy region of interest (ROI), for Counts per Second 0 1000 2000 3000 4000 5000 this experiment Spectrum Signal Regions of Interest [•]bandwidth is **±10** LOG No radionuclides detected Total Spectrum Image Quality Energy (keV) Live Time (s) 00:03:57.94 keV. 242.26 keV Count Rate (s⁻¹) 17740.44 User 20 A Excel Use 105 6 Counts Dead Time (%) 2.71 Radiation spectrum detected User User 1 100000 ROI Rate (s⁻¹) 6832.74 10000 Excellent 1000 Vuser User 3 Excellent 100 User 4 1 User 100 Excellent 10 mm User User 5 120 Excellent ANSTO 50 150 100 **10th International Beam Instrumentation Conference** 14/09/2021 + Add ROI

Dipole Source (B = 1.25T; E_c = 8 keV)

PD BEAMLINE

14/09/2021

Dipole source – PD ($E_c = 8$ keV)

Counts per Second 0 10 20 30 40 50

Dipole source - PD

Energy Spectrum

Regions of Interest

	Туре	Name	Energy (keV)	Range (keV)	Counts	Rate (cps)	Quality	Page
#1	User	User	20.48	13.4 - 27.6	10704	22	Insufficient Data	2
#2	User	User 1	40.02	32.9 - 47.1	41973	89	Insufficient Data	3
#3	User	User 2	60.17	52.5 - 67.9	104555	221	Excellent	4
#4	User	User 3	80.34	72.0 - 88.7	75055	159	Okay	5
#5	User	10th Inte User 4	rnational Beam Instrui 99.94	mentation Conference 91.6 - 108.3	21540	45	Good	6

ANSTO

14/09/2021

14/09/2021

14/09/2021

10th International Beam Instrumentation Conference

Permanent Magnet Multipole Wiggler (B = 1.6T @ 18.2mm; E_c = 11.4 keV)

XAS BEAMLINE

14/09/2021

PMW - XAS

ANSTO

14/09/2021

PMW - XAS

Counts per Second 0 2500 5000 7500 10000 12500 15000

Energy Spectrum

Regions of Interest

	Туре	Name	Energy (keV)	Range (keV)	Counts	Rate (cps)	Quality	Page
#1	User	User	19.885	12.8 - 27.0	3651557	12995	Excellent	2
#2	User	User 1	40.02	32.9 - 47.1	15940396	56730	Excellent	3
#3	User	User 2	60.17	52.5 - 67.9	18321722	65205	Excellent	4
#4	User	User 3	79.75	71.4 - 88.1	14387378	51203	Excellent	5
#5	User	User 4	99.94	91.6 - 108.3	6658978	23698	Excellent	6
	User	User 5	118.96	110.0 - 127.9	3919191	13948	Excellent	7
#7	User	User 6	139.785	130.3 - 149.3	2503472	8909	Excellent	8
#8	10	tional Beam Instr	umentation@onfere	_{nce} 150.5 - 169.6	1252546	4457	Excellent	9

14/09/2021

ANSTO

14/09/2021

In-vacuum Undulator (22mm; K = 1.77; E_{1st} = 1550 eV)

MX2 BEAMLINE

14/09/2021

MX2 – IVU

MX2 – IVU (22mm; K = 1.77; E_{1st} = 1550 eV)

Counts per Second 0 2500 5000 7500 10000 12500

MX2 – IVU (22mm; K = 1.77; E_{1st} = 1550 eV)

Energy Spectrum

Regions of Interest

	Туре	Name	Energy (keV)	Range (keV)	Counts	Rate (cps)	Quality	Page
#1	User	User	20.48	13.4 - 27.6	278165	3348	Excellent	2
1 #2 /09/2	2021 ^{User}	User 1	40.02 10th International Beam In	32.9 - 47.1 strumentation Conference	1411409	16992	Excellent	3

14/09/2021

10th International Beam Instrumentation Conference

Counts per Second 0 1000 2000 3000 4000 5000

Counts per Second

Spectra Comparison

STORAGE RING

Radiation damage downstream of the EPU vacuum chamber

SECTOR 14

Location and Spectrum

SR14 EPU Vacuum Chamber Images

per Second

ί0

1000

20 keV

40 keV

60 keV

4000

SR14 EPU Vacuum Chamber Images

80 keV

100 keV

120 keV

10th International Beam Instrumentation Conference

per Second 0 20

Counts

SR14 EPU Vacuum Chamber Conclusions

2 mA!

- Spectrum shows essentially the dipole spectrum.
- Result of upstream dipole radiation illuminating the end of the narrow gap Aluminium vacuum chamber.
- Occurs in the last 300 mm of the ID vacuum chamber.
- Could be upstream mask is insufficient or a design imperfection.

Middle Long Girder, Dipole crotch absorber

SECTOR 13

Location and Spectrum

Total Spectrum

14/09/2021

SR13 Upstream Dipole Absorber

EPU in sector 14

14/09/2021

10th International Beam Instrumentation Conference

per Second 0 1000 2000 3000 4000 5000 6000

Counts

40 keV

60 keV

ANSTO

20 keV

SR13 Upstream Dipole Absorber

80 keV

100 keV

120 keV

ANSTO

200

250

Counts per Second

0

50

14/09/2021

SR13 Conclusions

- Still see radiation from the EPU.
- Scattered radiation from the dipole crotch absorber can penetrate the 2mm vacuum vessel resulting in the observed spectrum.

Upstream dipole – vertical collimators (scrapers)

SECTOR 11

20 keV

40 keV

60 keV

ANSTO

14/09/2021

10th International Beam Instrumentation Conference

per Second 0 100

200

400 500 600

Counts

14/09/2021

10th International Beam Instrumentation Conference

Counts per Second 80 keV

100 keV

120 keV

ANSTO

Vertical scrapers closed to reduce lifetime to 6 hours.

SR11 Scraper Conclusions

- Below 100 keV, the radiation spectrum is dominated by the dipole radiation from downstream wiggler which has the same Aluminium chamber as the EPU.
- Above 100 keV, we are observing the effects of Bremsstrahlung radiation from electrons colliding with the copper scrapers.
- The radiation is scattered everywhere creating a "cloud" or sources around the scrapers and at the lead wall where the Bremsstrahlung radiation hits.

CONCLUSION

14/09/2021

Strengths

- Will be valuable in identifying the best locations for locating and subsequently measuring local hotspots.
- Used to define where local shielding should be implemented.
- Useful where synchrotron radiation is involved.
- Can be used to isolate potential obstructions to the synchrotron radiation in the front-ends or beamline optics.

Weaknesses

- Weighing in at ~20 kg it is heavy
- Cannot reconstruct images if the source intensity cannot be held constant for more than a few minutes.
- Cannot be used in the injector where there is a very low duty factor (150 ns over a 1 second injection rate).

Future Plans

- Developing solutions for Aluminium chamber problems.
- Using imager to design local shielding around SCW photon absorber and reduce incidence of sensor failures around it.
- Will be working with the team that developed CORIS360 to investigate:
 - Low energy (and lighter) version of the detector
 - Optional adapters
 - like an external sensor for background measurements to help with variable intensity sources
 - > Lighting options (was pretty dark in the tunnels)

