Beam Position Monitor Calibration by Rapid Channel Switching*

R. Hulsart \dagger, R. Michnoff, S. Seletskiy, P. Thieberge
Brookhaven National Laboratory, Upton, NY, USA

Abstract

 the pickup electrodes between the two signal cables and samping channels), using switches instaled near the BPM was impemented to combat these calibration issuss. Bias in each signal path appearr as an offset which has an equal and opposite component when the cables are reversed. Taike the average of the two
reverse position reduces this offset error. Successul transersse cooling of the RHIC ion beam has been verified after using this switching technique to provide continuous calibration of the BPM electronics. Details of the processing hardware and switch control methodology to achieve this result will be discussed.

BPM Switching for LEReC with Ion and Electron Beams

The figure above illustrates the differences in calibration very clearly during the moment that the ion beam in RHIC was removed. In this particular case the ion beam intensity was several times higher than the electron beam, so that it dominated the BPM response when both beams were present (therefore the response shown on the left is nearly identical with ion beam alone). When the ions were removed it is evident that the position appears to have shifted by $\sim 200 \mu \mathrm{~m}$ when looking at the turn-by-turn data in
either switch position. The average of these two positions remains the same however, which illustrates that this offset comes from a source downstream of the switches, and not the beams themselves. This was further verified by the fact that transverse cooling was evident (using other instrumentation) when the beams were centered based on these BPM measurements. Note that the time axis in this figure is not continuous - only 1024 turns are reported each second, despite the revolution frequency of $\sim 76 \mathrm{KH}$
The jumps in the position The jumps in the position correspond to changing the switches every 100 turns.

Temperature and Drift Compensation

By running the switching in this continuous mode, long-term drifts due to thermal effects are also compensated for. Any changes in attenuation in the long cables running out of the tunnel due to temperature will be averaged out by this same method. In addition, thermal effects within the
electronics, both in the filtering stages and amplifiers, also benefit from the same averaging. Figure 4 electronics, both in the filtering stages and amplifiers, also benefit from the same averaging. Figure 4
shows the result when a test signal was applied to a LEReC BPM where the envelope of the turn-by-turn shows the result when a test signal was applied to a LEReC BPM where the envelope of the turn-by-turn
data can be seen to change by ~ 40 um as temperature is changing (top plot) by $\sim^{\circ} \mathrm{C}$ due to air conditioner cycling in the equipment building. The average position (red trace) however remains almost unaffected

