

Beam Position Detection of a Short Electron Bunch in Presence of a Longer and More Intense Proton Bunch for the AWAKE experiment

The Advanced WAKefield Experiment (AWAKE)

The AWAKE ingredients

0.1-0.6 nC, 4-20 ps Low energy High energy proton beam 48 nC, 1 ns Rubidium plasma Rb vapour +

Proton Bunch Self-Modulation 2

The 1-ns proton bunch is fragmented in a train of microbunches in the propagation in the first few metres of plasma

Plasma Wakefield Acceleration

3 The electron beam is introduced in the wake of the microbunches train, and gets accelerated

SPECTROMETER ELECTRON Electron BPMs LINAC LASER PULSE DUMP Plasma cell Accelerated Beam SPS diagnostics rotone Proton RPI

The Problem:

The more intense proton beam overshadows the electrons in the common beamline

Beam position monitors for co-propagating beams

Cherenkov Diffraction-based BPMs

Radiation generation

- Cherenkov Diffraction Radiation (ChDR) is polarization radiation that is produced in a dielectric material when a particle is passing in the vicinity while travelling faster than the speed of light in the dielectric
- Non-interceptive diagnostic technique
- High photon fluence
- ChDR is emitted at the characteristic Cherenkov angle

Mechanical design

- Ceramic cylindrical ChDR radiator in a metallic flanged body for integration
- Radiator oriented at the Cherenkov angle to limit internal reflections

Electromagnetic design

- ChDR produced broadbandly at the radiator surface
- The radiator shape confines the EM field internal propagation
- Similar cutoff effect to waveguides • Large CST Studio simulation
- campaign to study the emitted radiation properties as function of the geometry

- For cylindrical radiators, the diameter is the key parameter Selecting the diameter is a tradeoff between power emitted and cutoff frequency
- Larger diameters allow for the propagation of lower frequency radiation
- · Smaller diameters will limit the radiated power

 $\cos(\vartheta_{ch}) = \frac{1}{\beta n}$

A ChDR radiator button (front) compared to a conventional capacitive button (back)

 p^+ 48 nC, σ = 250 ps 600 pC, $\sigma = 5$ ps -10 $-e^{-100}$ pC, $\sigma = 1$ ps (qB) -20 inde Per -30 -40 -50 -60 ency (GHz)

Experimental tests

Experimental test at the CERN Linear Electron Accelerator for Accelerator Research (CLEAR)

- Electron single bunch beam, 50-400 pC, and variable length of 1.1 - 4.8 ps (1σ)
- Flexible detection system in the Ka-band based on Schottky diodes working at 30.0 GHz, with 300 MHz BW
- Test in air Roughly half the sensitivity than the ideal wall current model for traditional BPMs

Future developments

 Test in vacuum Radiator to waveguide transition

- Sensitivity to bunch length
 - The EM field of the electron and proton bunch are radically different
 - Different extension of the coherent spectrum depending on bunch length
 - s: stronger at low frequency, but quick decay Electrons: more modest magnitude, but constant
 - for tens of GHz
 - Same spectral power point at about 2 GHz