

New Beam Loss Detector System for EBS-ESRF

Laura Torino IBIC 2018, 12/09/2018

Beam Loss Detection

Monitor and localize the particle losses around the storage ring to prevent the accelerator from damages, see "hidden" obstacles, and improve the machine parameters

- Slow Losses: Unavoidable, determine the beam lifetime. Time scale ~ 1 s
- Fast Losses: Accidental, caused by traumatic events. Down to the single bunch time scale.

European Synchrotron Radiation Facility

Extremely Brilliant Source

$$\label{eq:ESRF} \begin{split} \mathsf{ESRF} \Rightarrow \mathsf{EBS} \\ \mathsf{Lower horizontal emittance} \Rightarrow \mathsf{higher and more coherent} \\ \mathsf{synchrotron radiation flux} \end{split}$$

Page 2 | IBIC 2018, 12/09/2018 | Laura Torino

European Synchrotron Radiation Facility

Extremely Brilliant Source

Current ESRF system is not compatible with EBS \Rightarrow Design a new system for EBS and commission it on ESRF

Page 2 | IBIC 2018, 12/09/2018 | Laura Torino

Requirements for the new system

\rightarrow PMT-scintillator based detector \rightarrow Libera BLM electronics

Page 3 | IBIC 2018, 12/09/2018 | Laura Torino

Detector

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - $\hfill\square$ Powered 5 V
 - \square 0-1 V gain control
- EJ-200 scintillator rod (100x22mm)
 - Wrapped in reflective foil
- Aluminum casing
- "Light" lead shielding

Detector

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - $\hfill\square$ Powered 5 V
 - \square 0-1 V gain control
- EJ-200 scintillator rod (100x22mm)
 - Wrapped in reflective foil
- Aluminum casing
- "Light" lead shielding

Detector

Page 5 | IBIC 2018, 12/09/2018 | Laura Torino

Page 5 | IBIC 2018, 12/09/2018 | Laura Torino

Libera BLM

- Power and control 4 BLDs
- 4 independent 5 V power supplies
- 4 independent gain control channels and 0-31 dB attenuation
- 4 independent read out channels
- 4 independent impedance settings $(50 \Omega/1 M\Omega)$
- Trigger input
- \blacksquare > 10 MHz bandwidth
- 8 ns ADC sample (125 MHz)

Page 6 | IBIC 2018, 12/09/2018 | Laura Torino

PMT Calibration

PMT output depends on sensitivity and the applied gain \Rightarrow Important to obtain comparable data from different PMTs

Blue LED (In-lab)

Register the PMT output and compare with the PMT specification Ce137 Source (In-situ)

Calibration – Sensitivity

- *S_H*: Sensitivity individual data-sheet
- *S_L*: Sensitivity measured with the LED
- *S_{Ce}*: Sensitivity measured with the Ce137 source
- *S*_D: Sensitivity data-sheet

Calibration – Sensitivity

- $S_D = 210 \, \text{A/Im}$
- $S_{H,avg} = 483 \, \text{A}/\text{Im} \pm 70\%$

•
$$\frac{s_{H,avg}}{S_{L,avg}} = 1.06 \pm 20\%$$

•
$$\frac{S_{H,avg}}{S_{Ce,avg}} = 1.002 \pm 12\%$$

Page 8 | IBIC 2018, 12/09/2018 | Laura Torino

Calibration – Sensitivity

- *S*_D = 210 A/Im
- $S_{H,avg} = 483 \, \text{A}/\text{Im} \pm 70\%$

•
$$\frac{s_{H,avg}}{S_{L,avg}} = 1.06 \pm 20\%$$

•
$$\frac{S_{H,avg}}{S_{Ce,avg}} = 1.002 \pm 12\%$$

Final sensitivity: average of the three values

Page 8 | IBIC 2018, 12/09/2018 | Laura Torino

Calibration – Gain

PMT output signal depends on the PMT gain

Page 9 | IBIC 2018, 12/09/2018 | Laura Torino

Libera BLM Calibration

 $SA_C = SA \times G \times C \times A$

- SA_C: Calibrated Losses
- SA:Raw losses
- G: Depends on the applied gain
- C: Inverse of PMT anode sensitivity
- A: Depends on the BLD Attenuation

Libera BLM Calibration

 $SA_C = SA \times G \times C \times A$

- *SA_C*: Calibrated Losses
- SA:Raw losses
- G: Depends on the applied gain
- C: Inverse of PMT anode sensitivity
- A: Depends on the BLD Attenuation

Scintillator sensitive to synchrotron radiation scattered x-rays

- " Minimal-Losses" condition
- \rightarrow Low current per bunch
- ightarrow High vertical emittance

 \downarrow

Touschek effect suppressed

Scraping current from 20 to 0 mA

Scintillator sensitive to synchrotron radiation scattered x-rays

Scintillator sensitive to synchrotron radiation scattered x-rays

Page 11 IBIC 2018, 12/09/2018 | Laura Torino

Location ESRF-EBS

- Inner side of bending magnets
- Comparison old BLD system
- Losses @ IDs monitoring

"Old" BLD system: 64 detectors

"New" BLD system: 128 detectors

ESRF Location Example

Page 13 | IBIC 2018, 12/09/2018 | Laura Torino

ESRF Location Example

Page 13 | IBIC 2018, 12/09/2018 | Laura Torino

Comparison New-Old BLD system

Temporal overlap of the two systems \Rightarrow Possibility of comparison

ESRF

The European Synchrotron

Page 15 | IBIC 2018, 12/09/2018 | Laura Torino

Archive

Page 16 | IBIC 2018, 12/09/2018 | Laura Torino

- 1 MOhm impedance
- Not-synchronous
- Integration over $\simeq 130.000$ turns (0.4 s)
- 1 Hz repetition rate

Useful in the control-room to monitor on-line losses distribution

Normal Operation

- 1 MOhm impedance
- Not-synchronous
- Integration over $\simeq 130.000 \text{ turns}$ (0.4 s)
- 1 Hz repetition rate

Useful in the control-room to monitor on-line losses distribution

Off-line data can be correlated with other storage ring events

Vacuum Bursts

Vacuum Bursts

- 1 MOhm impedance
- Not-synchronous
- Integration over ≃ 130.000 turns (0.4 s)
- 1 Hz repetition rate

Useful in the control-room to monitor on-line losses distribution

Off-line data can be correlated with other storage ring events

Page 17 | IBIC 2018, 12/09/2018 | Laura Torino

- 1 MOhm impedance
- Not-synchronous
- Integration over $\simeq 130.000$ turns (0.4 s)
- 1 Hz repetition rate

Useful in the control-room to monitor on-line losses distribution

> Off-line data can be correlated with other storage ring events

Injection-mode operation

- 50 Ohm impedance
- Synchronous data
- Average over 4 turns, sum of 10 averages
- 4 Hz repetition rate

Automatic switch when linac and injection kicker on

One value, per BLD, per shot along the injection is stored

Short pulse injection

Injection-mode operation

- 50 Ohm impedance
- Synchronous data
- Average over 4 turns, sum of 10 averages
- 4 Hz repetition rate

Automatic switch when linac and injection kicker on

One value, per BLD, per shot along the injection is stored

Injection-mode operation

- 50 Ohm impedance
- Synchronous data
- Average over 4 turns, sum of 10 averages
- 4 Hz repetition rate

Automatic switch when linac and injection kicker on

One value, per BLD, per shot along the injection is stored

Turn-by-Turn Losses

- Synchronous data
- Sum over 1 turn
- 4 Hz repetition rate

Interesting for EBS commissioning

One shot injection and RF off

Page 19 | IBIC 2018, 12/09/2018 | Laura Torino

5 bunches injection

Page 20 | IBIC 2018, 12/09/2018 | Laura Torino

5 bunches injection

Page 20 | IBIC 2018, 12/09/2018 | Laura Torino

Outlooks

- New BLD system has been installed at ESRF
- PMT calibration
- Background suppression
- Location
- Operation
 - Decay-mode
 - Injection-mode
- Turn-by-Turn losses
- (Almost) Bunch-by-Bunch losses

Outlooks

- New BLD system has been installed at ESRF
- PMT calibration
- Background suppression
- Location
- Operation
 - Decay-mode
 - Injection-mode
- Turn-by-Turn losses
- (Almost) Bunch-by-Bunch losses

Ready for EBS!

Many thanks to K. Scheidt, N. Benoist, F. Taoutaou, J.L. Pons, P. Colomp, P. Leban, Beam Dynamics, Insertion Devices, and Operation groups!

