

The Application of Beam Arrival Time Measurement System at SXFEL

Shanshan Cao, Renxian Yuan, Jian Chen, Yongbin Leng SSRF BI Group

International Beam Instrumentation Conference Shanghai, China, 9-13 September 2018

IBIC 2018

Т

- Introduction
- Beam Arrival Time Measurement Techniques
- Typical RF Based Phase Detection
- Beam Flight Time Detection
- Conclusion & Future Work

SXFEL

Shanghai Soft X-ray FEL Test Facility

Shanghai Soft X-ray FEL User Facility

Parameters	Test Facility	User FEL-1	User FEL-2	Unit
FEL type	HGHG-EEHG	HGHG-EEHG	SASE Self-seeding	
Output Wavelength	9	2~10	1.2 ~ 3	nm
Bunch charge	0.5 ~ 1	~ 0.5	~ 0.2	nC
Pulse length (FWHM)	~0.5	0.03 - 1	0.03 - 1	ps
Peak current	~0.5	0.7	0.7	kA
Rep. rate	1~10	10~50	10 ~ 50	Hz

bunch, correct timing drifts **Beam arrival time (Longitudinal)**

measure

Beam arrival time

measure

Measurement scheme selection

Bock M K et al. Recent developments of the bunch arrival time monitor with femtosecond resolution at FLASH[J]. WEOCMH02, IPAC2010, Kyoto, Japan, 2010.

Lorenz R, Sabah S, Waldmann H, et al. Cavity-type beam position monitors for the SASE FEL at the TESLA test facility[R], 2003.

Typical RF BAM System Overview Timing Distribution System \geq When an electron beam enters into the cavity, it will Feedback excite EM filed and generate a RF signal The lowest eigenmode : TM010 \geq Seed Laser BAM Chicane Chicane **Accelerating Structures RF** Gun Undulators Generating a beam **Local Oscillator** induced RF signal Generating a LO signal at specific frequency **Phase detection** RF Clock <u>†</u> Trigger **Realize phase detection** and correction ADC Mixer IF LO **RF Front-end Signal Acquisition**

IF signal digitization

RF signal down conversion

Typical RF BAM System Limitation

Limitation: Require a high stable reference signal

- Long distance
- Temperature
- Humidity
- Physical motion

Frisch J. Beam Arrival Time Monitors[C],IBIC2015, Melbourne, Australia, 13-17 September 2015

SXFEL environment:

- Temperature and humidity control outside the tunnel: not good
- Existing environment noise outside the tunnel, physical motion
- a lot of thing to do

.....

Proposed scheme Two Cavity Mixing

Apply a BAM next to the injector to instead of the reference signal

Self-seeding FEL: Install one BAM at chicane's entrance and exit, respectively

0

BAM Cavity

• Extract energy out of the cavity to gain the information about the beam arrival time

M

Figure :Model build in simulation software

Figure : 3-D mechanical drawing

Parameters	Cavity #1	Cavity #2
Frequency / GHz	4.685	4.72
Q_0	4796	4835
Q_e	1.8e5	1.9e5
Q_L	4671	4716
R over Q/Ohm	107.2	107.9
Bandwidth /MHz	1.002	1.025
τ/ns	318	318

The installation of BAMs at SXFEL

Typical RF based phase detection

Typical RF based Phase Detection Schematic

2018/9/12

Typical RF based Phase Detection Results

Typical RF based Phase Detection Results

Figure 5: The beam arrival time deviation

Figure 7: The beam flight time deviation

Figure 6: The correlation between the two arrival time

- Bunch arrival time deviation : BAM01: 1.28 ps BAM02: 1.3 ps
- Beam flight time deviation : 93 fs
- Possible jitter source:
 - Disturbed reference signal
 - Non-optimized electronics
 - Environment: temperature...
 - long RF cables

Beam Flight Time Detection

two-cavities mixing

- BAM01
- BAM01 & BAM02

Dual-cavities Phase Detection Schematic - BAM01

Dual-cavities Phase Detection Results -BAM01

Figure 1: The two IF raw signal

Figure 2: The two IF signal frequency spectrum

Figure 3: The flight time (IF1)

Figure 4: The flight time (IF2)

Dual-cavities Phase Detection Results-BAM01

Beam flight time deviation :
IF-01: 66 fs IF-02: 37 fs

• Limitation:

....

- Electronics
- Larger environment noise: near injector, outside tunnel
- Cavity port & transmission difference

Dual-cavities Phase Detection Schematic - BAM01 & BAM02

Dual-cavities Phase Detection Schematic - BAM01 & BAM02

Figure 1: The two IF raw signal

Figure 3: The flight time (IF1)

Figure 2: The two IF signal frequency spectrum

Figure 4: The flight time (IF2)

Dual-cavities Phase Detection Schematic

- Beam flight time deviation : IF-01: 51 fs IF-02: 102 fs
- Possible jitter source:
 - Beam jitter
 - Electronics
 - Transmission, cavity difference

by the typical RF based phase detection scheme

Typical scheme vs. Two cavity mixing scheme:

- Reference signal : not stable (transmission)
- Two cavity mixing scheme can get better performance (beam flight time measurement)

Conclusion & Future Work

- Four dual-cavity BAM has been designed, fabricated and installed at SXFEL
- A two cavity signals mixing scheme to measure the beam flight time/beam arrival time has been proposed & useful for SASE Selfseeding FEL
- Measured beam flight time via Typical vs. New Proposed scheme: measured best results: 37 fs

Place the RF front-end & ADC inside the tunnel

stable environment, such temperature, vibration, noise

- > Optimize the RF cables
- Optimize BAM RF front-end electronics
- Optimize phase algorithm

- Appreciated for the support from National Natural Science Foundation of China (No. 11375255 and No. 11375254)
- Appreciated for the help from beam physics group of SXFEL in design and analysis of beam experiment
- Appreciated for the help from beam operation group of SXFEL in beam experiment

Thanks for your attention

Contact: caoshanshan1992@sinap.ac.cn

2018/9/12