

Femtosecond Synchronization of PAL-XFEL

2018. 9. 12 Changbum Kim on behalf of PAL-XFEL team Pohang Accelerator Laboratory

IBIC 2018 (9/9~9/13, Shanghai)

Pohang Accelerator Laboratory

PAL-XFEL

Apr. 2011: PAL-XFEL project started (Total Budget: 400 M\$)

Apr. 2016: Commissioning started

Jun. 2017: User-service started (120 days for user, >95% of availability)

Plan in 2018

- 140 days for user
- HX self-seeding commissioning (user service starts in 2019)
- 30 Hz -> 60 Hz operation

PAL-XFEL Parameters

Main parameters		Undulator Line	HX1	SX1
e ⁻ Energy 10 e ⁻ Bunch charge 20 Slice emittance 0.5 Repetition rate 60 Pulse duration 5 f Peak current 3 I SX line switching DC Kie	10 GeV 20-200 pC 0.5 mm mrad 60 Hz 5 fs – 100 fs 3 kA DC (Phase-1) Kicker (Phase-2)	Wavelength [nm]	0.1 ~ 0.6	1 ~ 4.5
		Beam Energy [GeV]	4 ~ 10	3.15
		Wavelength Tuning [nm]	0.6 ~ 0.1 (energy or gap)	4.5 ~ 3 (energy) 3 ~ 1 (gap)
		Undulator Type	Planar, out-vac.	Planar
		Undulator Period / Gap [mm]	26 / 8.3	35 / 8.3

Photocathode RF Gun

PAL-XFEL K&M Gallery

PAL-XFEL Linac

PAL-XFEL Bunch Compressor

Start-to-End Simulation of Hard X-ray Line

PAL-XFEL Undulator

First FEL Lasing

Spontaneous radiation

FEL Optimization

- Beam based alignment in undulator section
- e-beam size matching in undulator section
- Undulator gap tuning
- Undulator offset tuning
- Undulator tapering
- Phase shifter gap tuning

Undulators in PAL-XFEL

Configuration of UND section						
< <u> </u>	.05 m	_><	5 m			
T					T	
СВРМ	QUAD COR	Phase Shifter (PS)	Undulator (UND)			

Device	Control parameters
CBPM	H/V-offset (in PV) H/V-position (by mover)
QUAD	Field, H/V-position (by mover)
COR	H/V-kick
PS	Gap
UND	Gap, V-offset

Beam Based Alignment

 $E_1 < E_2$

CBPM Offsets Δb_i , Quad Offsets Δq_i

- Model beam position (m_j) at CBPMs as a function of initial launch at 1st CBPM (x_j) , quad offsets (Δq_j) , CBPM offsets (Δb_j) ($m = [R_x R_q R_b][x'\Delta q'\Delta b]'$)
- Calculate response matrix for 4 energies (4 ~ 10 GeV for HX)
- Measure ~200 orbits and average for each energy
- Generate final response matrix, Δq_i , Δb_i and apply Δq_i and Δb_i

Henrik Loos, LCLS FAC (2009), P. Emma et al. NIM A 429, 407-413 (1999)

Undulator BBA

- Beam positions are measured at four different beam energy: 4, 5, 7, 10 GeV
- BPM offsets and quad offsets are calculated to get dispersion-free straight orbit
- All cavity BPMs and quads have its own mover which can move up to +/-1 mm with precision of 1 um for horizontal and vertical directions

Undulator Gap Tuning

T. Tanaka et al. Phys. Rev. ST Accel. Beam 15, 110701 (2012).

Undulator Offset

- Finding of an undulator mid-plane by vertical offset scan
- To use the optimum field region in an undulator

Phase Shifter Gap Tuning

- PS scanning with the FEL power measurement
- To find optimum PS gap in the tapering condition

FEL Saturation (HX & SX)

Nov. 27, 2016

Feb. 02, 2017

Stability of 0.1 nm FEL

FEL Energy

- ~ 1.0 mJ for 7 ~ 10 keV FEL (1.3 mJ @ 12.7 keV)
- \sim 0.7 mJ for 10 \sim 15 keV FEL

PAL-XFEL Beamline

3 Experimental Station: Coherent X-ray Imaging, Hard X-ray Pump & Probe, Soft X-ray Pump & Probe

Pump-Prove Experiment

Bi(111) thin film (50 nm) on GaSb(111)/Si(111) X-ray: 6 keV X-ray size: ~ 60 x 60 um² Laser: 800 nm, 100 fs Detector: MPCCD 0.5 Mega pixel

- No timing jitter correction

- Averaged by 50 trials of the time delay scan and normalized by GaSb(111) Bragg peak intensity
- Only slow time-drift correction
- Vibration Frequency : 2.7 THz
- Instrument Response: 137 fs (FWHM)

PAL-XFEL Timing Distribution

Temperature Stabilization

Phase Drift Measurement

Timing Jitter Measurements

Time (Seconds)

Beam Arrival Time

Beam Arrival Monitor

FEL Position Jitter

Measured at 40 m downstream YAG-screen from last undulator

Laser & XFEL Cross-Correlator

FEL Timing Jitter

FEL-Laser Cross-correlation

Beam Arrival Time at Undulator

Thank you for your attention.