

Commissioning of the Open Source Sirius BPM Electronics

Daniel de Oliveira Tavares

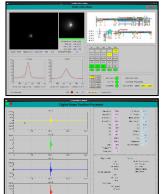
on behalf of the LNLS Beam Diagnostics Group September 11, 2018

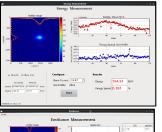
- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

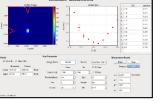
- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

Sirius – new 4th generation light source in Brazil

Sirius – new 4th generation light source in Brazil





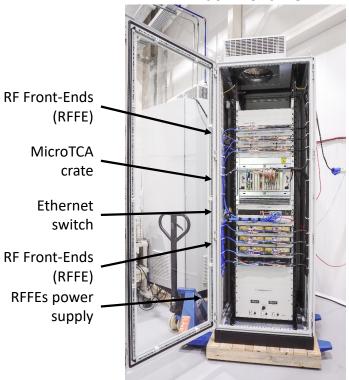

Sirius – new 4th generation light source in Brazil

Booster and LTB transfer line in final installation phase →

Simultaneous installation of **Storage Ring**

← Turn-key LINAC was successfully commissioned in **April-May 2018 together with SINAP** team

April 2018


- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

Sirius BPM Electronics Overview

BPM Rack Front View

BPM Rack Rear view

Proceedings of IBIC2013, Oxford, UK

DEVELOPMENT OF THE SIRIUS RF BPM ELECTRONICS

D. O. Tavares#, R. A. Baron, F. H. Cardoso, S. R. Marques, J. L. B. Neto, L. M. Russo, LNLS, Campinas, SP. Brazil

A. P. Byszuk, G. Kasprowicz, A. J. Wojeński, Warsaw University of Technology, Warsaw, Poland

Proceedings of ICALEPCS2013, San Francisco, CA, USA

DEVELOPMENT OF AN OPEN-SOURCE HARDWARE PLATFORM FOR SIRIUS BPM AND ORBIT FEEDBACK

D. O. Tavares*, R. A. Baron, F. H. Cardoso, S. R. Marques, L. M. Russo, LNLS, Campinas, Brazil A. P. Byszuk, G. Kasprowicz, A. J. Wojeński, Warsaw University of Technology, Warsaw, Poland

Proceedings of IBIC2013, Oxford, UK

DEVELOPMENT OF THE RF FRONT END ELECTRONICS FOR THE SIRIUS BPM SYSTEM

R. A. Baron, F. H. Cardoso, J. L. B. Neto, S. R. Marques, LNLS, Campinas, Brazil J.-C. Denard, SOLEIL, Paris, France

Proceedings of IBIC2014, Monterey, CA, USA

STATUS OF THE SIRIUS RF BPM ELECTRONICS

S. R. Marques#, R. A. Baron, G. B. M. Bruno, F. H. Cardoso, L. A. Martins, J. L. Brito Neto, L. M. Russo, D. O. Tavares, LNLS, Campinas, SP, Brazil

Proceedings of PCaPAC2016, Campinas, Brazil

GATEWARE AND SOFTWARE FRAMEWORKS FOR SIRIUS BPM ELECTRONICS

L. M. Russo*, J. V. F. Filho, LNLS, Campinas, SP, Brazil

Proceedings of PCaPAC2016, Campinas, Brazil

OPEN HARDWARE EXPERIENCE ON LNLS' BEAM DIAGNOSTICS

G. B. M. Bruno*, D. O. Tavares, H. A. Silva, F. C. Sant'Anna, J. L. Brito Neto, L. M. Russo, L. A. Martins, S. R. Marques LNLS, Campinas, Brazil

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing

SOFTWARE AND GATEWARE DEVELOPMENT FOR SIRIUS BPM ELECTRONICS USING A SERVICE-ORIENTED ARCHITECTURE

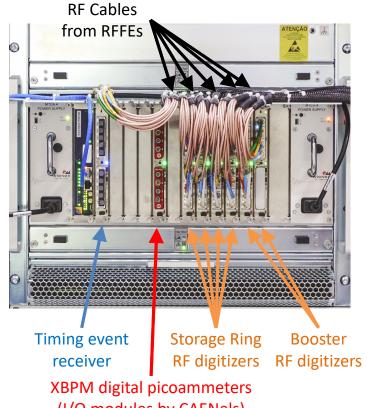
L. M. Russo*, LNLS, Campinas, SP, Brisil

em Energia e Materiais

Sirius BPM Electronics Overview

RFFE Modules

MicroTCA.4 crate

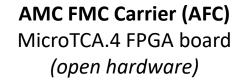

> Ethernet switch

RFFE Modules

BPM Rack Rear view

(I/O modules by CAENels)

RFFE-uC


(open hardware)

https://github.com/lnls-dig/rffe-uc-hw

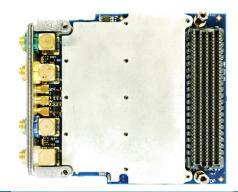
2x2 RF channel switching for gain drift compensation

https://www.ohwr.org/projects/afc

MicroTCA RTM 8 SFP

(open hardware)

https://github.com/InIs-dig/utca-rtm-8-sfp-hw




FMC ADC 250 MS/s 16-bit 4-channel (open hardware)

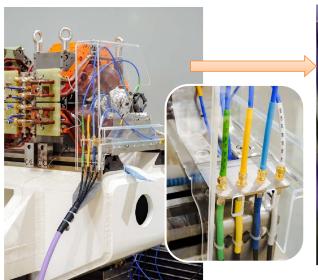
https://github.com/lnls-dig/fmc250-hw

FMC-Pico-1M4 (by CAENels)



FMC POF 5-channel

(open hardware)


https://github.com/lnls-dig/fmc-5POF-hw

Sirius BPM Electronics Overview - Cables

Intra Rack Cables Double shielded RG316 RFFE output → Digitizer 2 meters

Long Coaxial Cables

4 delay-matched LMR195 extruded within a common encapsulation Patch panel → RFFE input 25 m - 70 m

Semi-rigid coaxial cables Pick-up → Patch panel 0.5 meter

- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

Manufacturing – Selection and Procurement

Sirius qualifies suppliers for the high-tech market

May 02, 2018

Brazilian firms are developing equipment for the new synchrotron and acquiring the capabilities to be global suppliers. In São Paulo, FAPESP and FINEP selected 23 proposals submitted by 18 firms to develop components for Sirius (photo: CNPEM)

Cadservice (Brazil)

RFFE boards

Produza (Brazil)

FMC POF 5-ch

ATMOS Sistemas (Brazil)

System Integrator

CONTRACT MANUFACTURING

HOME ABOUT ACTIVITIES MEDIA CONTACT

PRODUCTS

Creotech (Poland) AMC, RTM and FMC

Manufacturing – System Integration

Individual boards testing

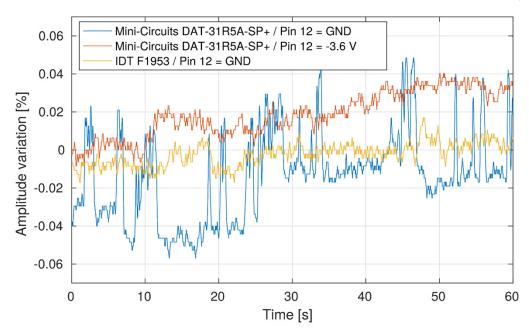
100-hour burn-in

Manufacturing – System Integration

Failure rate for different BPM equipment tested at ATMOS Sistemas

Equipment	Total	Rejected	Failure %
RFFE (RF boards)	520	20	3.8%
RFFE (Control board)	260	1	0.4%
AFC	175	7	4.0%
FMC ADC	257	11	4.3%
Intra-rack Cables	1180	14	1.2%

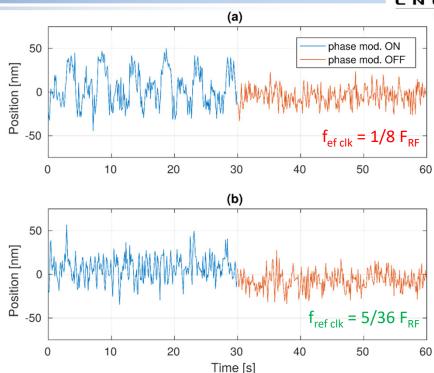
- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion



Issues Found (RFFE Attenuator)

Issue: random gain variations in the order of 0.05% on RF channels due to Mini-Circuits RF digital step attenuator issue.

Possible cure: replacement of attenuator by footprint-compatible device from another supplier (IDT).


Attenuator gain behavior measured at zero span and 5 Hz resolution bandwidth. Mini-Circuits B14-TB-342 and IDT F1953EVBI evaluation kits were used.

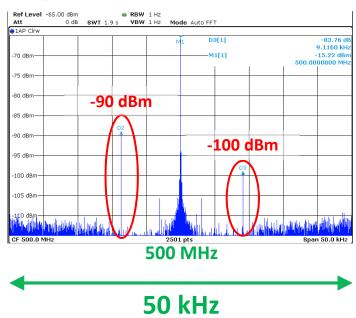
Issues Found (EMI - Reference Clock Interference)

nce Clock Interference)

Issue: 8th harmonic of reference clock interfering with RF signals causing phase dependence of the position measurements

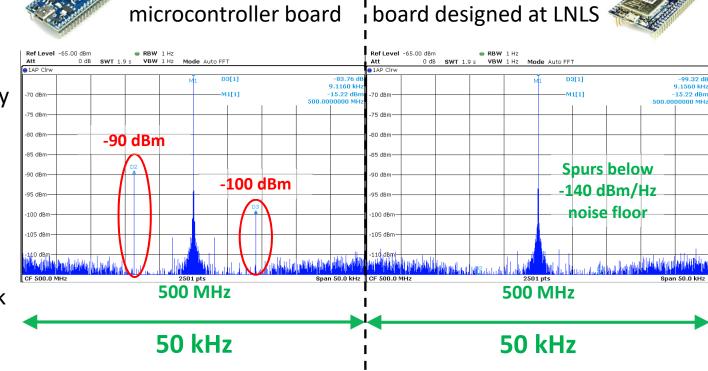
Cure: change the reference clock from $1/8 F_{RF}$ (62.5 MHz) to $5/36 F_{RF}$ (69.44 MHz) in order to avoid harmonics near at the RF frequency

Position measurement variation caused by 5 Hz phase modulation in RF signal caused by reference clock intereference


Issues found (EMI - RFFE μ C Ethernet PHY)

Issue: harmonics of microcontroller Ethernet 125 MHz clock recovery circuitry coupling to RF signals

commercial mbed microcontroller board

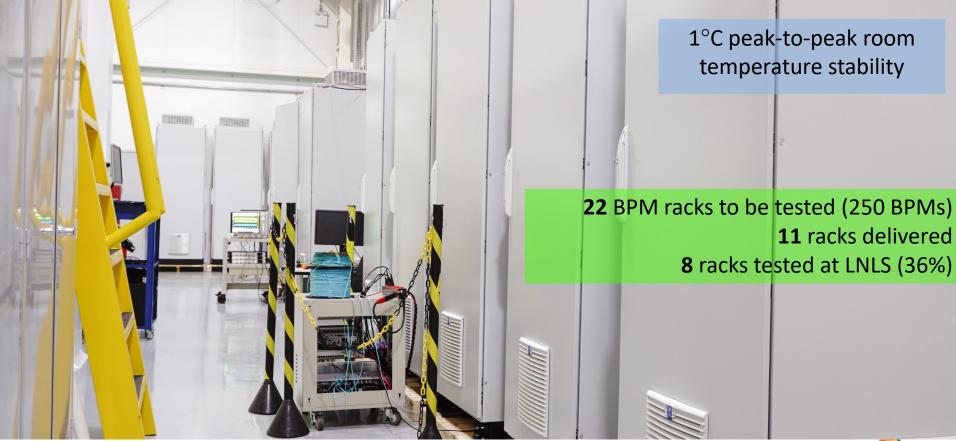

Issues found (EMI - RFFE μC Ethernet PHY)

commercial mbed

Issue: harmonics of microcontroller Ethernet 125 MHz clock recovery circuitry coupling to RF signals

Cure: new microcontroller board designed to prevent EMI and providing spread-spectrum clock generator technique

open source RFFE-uC


- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

Performance tests setup

Performance tests setup

Performance tests setup

Movable testing rack Timing and RF signals

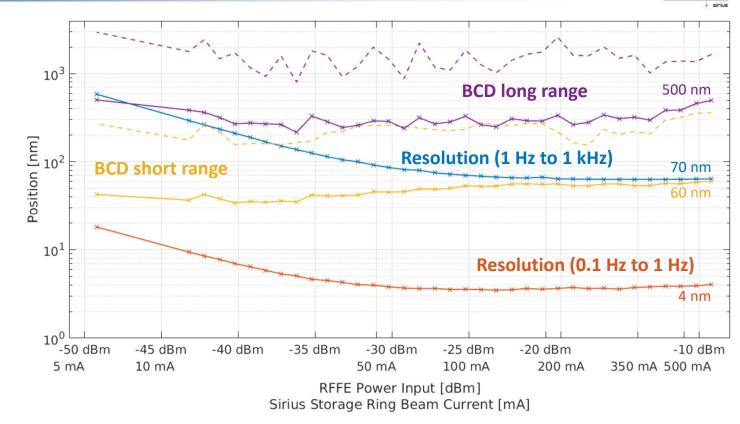
- Fiber optics
- Ethernet switch
- AW signal generator Keysight 33500B
- SINAP Event Generator (EVG)
- R&S SMA100A RF signal generator

Inside the BPM rack

(not shown in the picture)

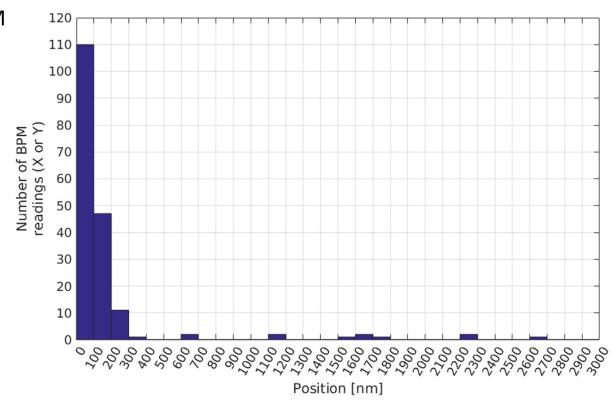
- 1x 1:16 splitter
- 13x 1:4 splitters (one per BPM)
- 1 dB and 2 dB attenuators → simulates
 0.5 mm off-centered beam in both
 planes

Achieved performance: Resolution and BCD

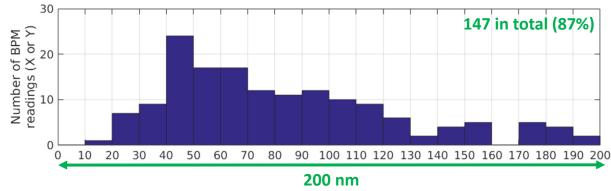


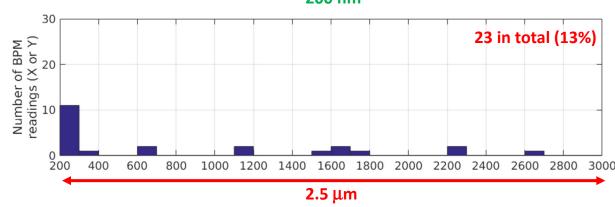
Beam current Dependence (BCD) vs. Resolution tradeoff

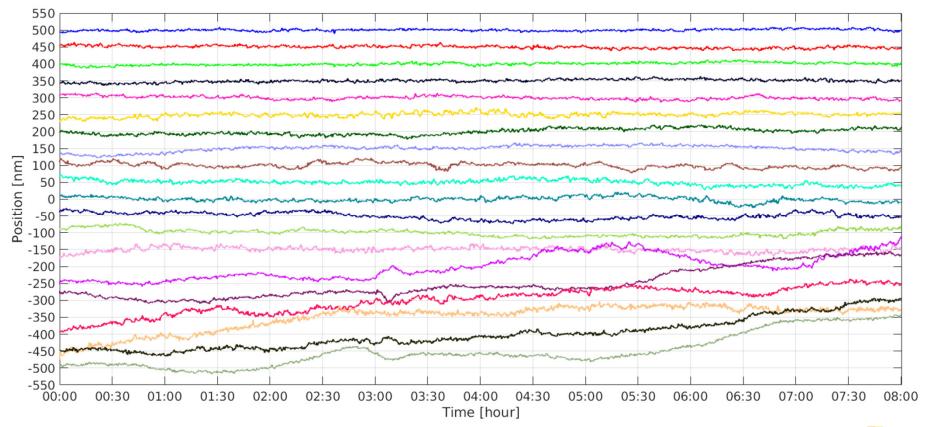
Optimized for **BCD**: **-5.6 dBm** power level at ADC board input (8% of ADC full-scale)


BCD long range 30% variation (decay mode)

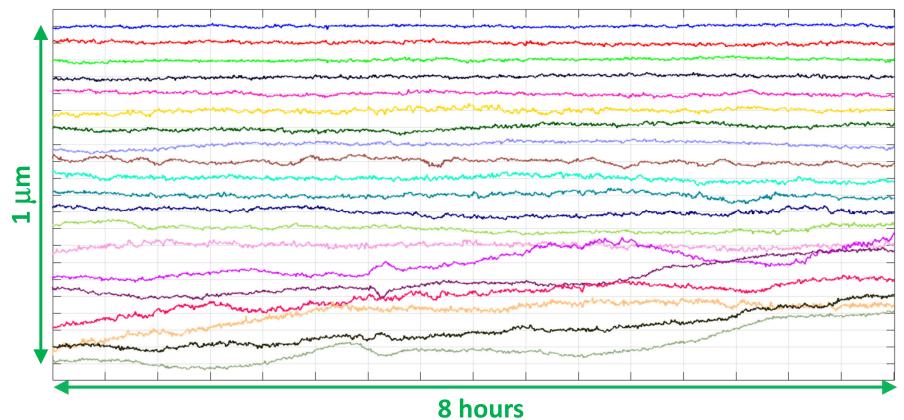
BCD short range 2% variation (top-up)




- 90 tested BPMs (36%) 180 BPM
 X and Y readings
- 8-hour peak-to-peak drift
- 1 minute sampling period (decimated from 10 Hz data stream)
- $K_X = K_Y = 10 \text{ mm}$



- 2 out-of-specification BPMs
 have defective RFFE modules
- The remaining out-ofspecification BPMs are under investigation

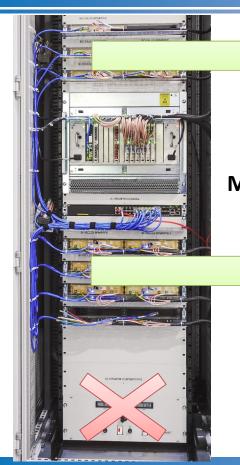


- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

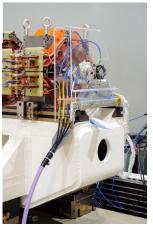
Next Steps

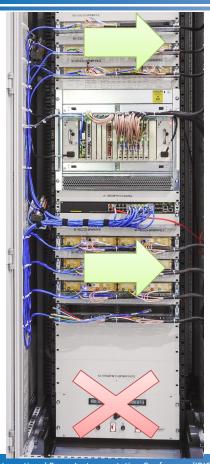
- Installation of BPM cables in tunnel and instrumentation rooms
- Commissioning with real beam signals before the end of 2018 (low energy transfer line and booster)
- MicroTCA.4 RTM Fast Orbit Corrector Power Supply design
 - 8-channel 10 kHz bandwidth maximum 1 A current (30 μrad)
 - Design validation board: https://github.com/lnls-dig/rtm-damp-dvb
 - Final design: https://github.com/lnls-dig/rtm-damp-hw (still to come)
- In the longer term: idea to compensate for drifts caused by the long coaxial cables...

Future plans – First idea

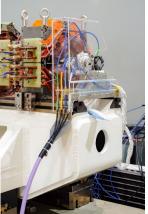


Future plans – First idea




Move RFFEs to the tunnel, close pick-ups

Future plans – First idea



Move RFFEs to the tunnel

- RF channels switching also compensates for long cables' drifts
- Reuse cables and digitizers
- Get RFFE power supply from already existing PoE Ethernet switch
- Redesign only RFFE control board keep analog modules
- Challenges
 - Electronics inside the tunnel
 - Filtering high RF harmonics at the RFFE input

- Sirius Light Source Status
- Sirius BPM Electronics Overview
- Manufacturing
 - Manufacturer Selection and Procurement
 - System Integration and Failures
- Issues found
- Achieved Performance
 - Measurement Resolution
 - Beam Current Dependence
 - Long-term Drift
- Next Steps
- Conclusion

Conclusion

- Sirius BPM Electronics is in its final stage of deployment many issues were found and solved
- Main open issue: RFFE attenuator needs replacement
- Failure rates and achieved performance points to a smooth commissioning with real beam
- Modularity, adherence to industry standards and open hardware strategy lower the barriers for collaboration

