

APS UPGRADE INTEGRATED BEAM STABILITY EXPERIMENTS USING A DOUBLE SECTOR IN THE APS STORAGE RING

JOHN CARWARDINE

N. Arnold, R. Blake, A. Brill, H. Bui, G. Decker, L. Emery, T. Fors, P. Kallakuri, R. Keane, R. Lill, D. Paskvan, A. Pietryla, N. Sereno, H. Shang, S. Veseli, J. Wang, S. Xu, B-X. Yang

Argonne National Laboratory

IERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

International Beam Instrumentation Conference, 9-14 September 2018, Shanghai

OUTLINE

- Orbit stability requirements
- Unified fast + slow orbit feedback
- Targets for APS-U orbit feedback R&D
- Prototype implementation
- Performance
- Wrap-up

APS UPGRADE MULTI-BEND LATTICE

$$\varepsilon_x = C_L \frac{E^2}{N_D^3}$$

E = Beam energy (E = 6 GeV for APS MBA) N_d = Number of dipoles per sector (N_d = 7 for APS MBA)

Orbit Stability Requirements

Minimum Expected Beam Size at the IDs (42-pm Lattice)

σχ	σ _{x'}	σ,	σ _{y'}
12.6μm (<mark>275 μm</mark>)	2.5 μ rad (11 μrad)	2.8 μm (<mark>10 μ</mark> m)	1.7 μrad (3.5 μrad)

Beam Stability Goals for the APS Upgrade

Plane	AC rms Motion (0.01-1000 Hz)	AC rms Motion (0.01-1000 Hz)	Long Term Drift (>100 s)	Long Term Drift (>100 s)
Horizontal	1.25µm rms	0.25 µrad rms	1 µm rms	0.6 µrad rms
	(>6 µm)	(>1.7 urad)	(~10 µm*)	(~2.8 urad*)
Vertical	0.4 µm rms	0.17 µrad rms	1 µm rms	0.5 µrad rms
	(>3 µm)	(>0.85 urad)	(~10 µm*)	(~2.8 urad*)

(Present Storage Ring Performance) * Peak-to-Peak

PARAMETERS – PRESENT APS ORBIT FEEDBACK SYSTEM (1995)

Parameter	'Datapool'	RTFB
Algorithm implementation	Separate DC and AC systems for slow and fast correctors	
BPM sampling & processing rate	10 Hz	1.6 kHz
Corrector ps setpoint rate	10 Hz	1.6 kHz
Signal processors (20 nodes)	EPICS IOC	DSP (40 MFLOPS)
Num. rf bpms / plane	360	160 (4 per sector)
Fast correctors / plane	-	38 (1 per sector)
Slow correctors / plane	282	-
Fast corrector ps bandwidth	-	1 kHz
Fast corrector latency	-	~250 usec
Closed-loop bandwidth	DC - 1 Hz	1 Hz - 80 Hz

PARAMETERS – PRESENT APS ORBIT FEEDBACK SYSTEM (1995)

Parameter	'Datapool'	RTFB
Algorithm implementation	Separate DC and AC systems for slow and fast correctors	
BPM sampling & processing rate	10 Hz	1.6 kHz
Corrector ps setpoint rate	10 Hz	1.6 kHz
Signal processors (20 nodes)	EPICS IOC	DSP (40 MFLOPS)
Num. rf bpms / plane	360	160 (4 per sector)
Fast correctors / plane	-	38 (1 per sector)
Slow correctors / plane	282	-
Fast corrector ps bandwidth	-	1 kHz
Fast corrector latency	-	~250 usec
Closed-loop bandwidth	DC - 1 Hz	1 Hz - 80 Hz

OVERLAP IN COVERAGE OF SLOW AND FAST ORBIT FEEDBACK SYSTEMS

UNIFIED FEEDBACK ALGORITHM CONCEPT: SPATIAL- VS FREQUENCY-DOMAIN ORTHOGONALIZATION

Issue: combination of slow + fast systems is unstable

- Present scheme: separate into high- and lowfrequency systems ('woofer/tweeter' concept)
- Unified scheme: orthogonalize vector spaces ٠

IMPROVEMENTS IN ORBIT FEEDBACK SETTLING TIMES WITH UNIFIED FEEDBACK ALGORITHM USING EXISTING 20-YR OLD HARDWARE

- Slow: Datapool at 10 Hz
- Fast: RTFB at 1600 Hz
- Plots show time-domain responses to a step change in the orbit
- Left: present scheme with RTFB rolled-off towards DC using conventional formulation of inverse response matrices
- **Right**: with both systems operating down to DC using unified formulation for inverse response matrices

TARGETS FOR APS-U ORBIT FEEDBACK R&D IN TERMS OF ORBIT MOTION SPECTRA

Open- vs closed-loop PSDs with present RTFB (x-plane)

PARAMETERS – COMPARISON OF PRESENT AND NEW

Present system (circ. 1995)

Parameter	APS-U design*	'Datapool'	RTFB
Algorithm implementation	'Unified feedback' algorithm	Separate DC and AC systems for slow and fast correctors	
BPM sampling & processing rate	271 kHz (TBT)	10 Hz	1.6 kHz
Corrector ps setpoint rate	22.6 kHz	10 Hz	1.6 kHz
Signal processors (20 nodes)	DSP (320 GFLOPS) + FPGA (Virtex-7)	EPICS IOC	DSP (40 MFLOPS)
Num. rf bpms / plane	570 (14 per sector)	360	160 (4 per sector)
Fast correctors / plane	160 (4 per sector)	-	38 (1 per sector)
Slow correctors / plane	320 (8 per sector)	282	-
Fast corrector ps bandwidth	10 kHz	-	1 kHz
Fast corrector latency	<10 us	-	~250 usec
Closed-loop bandwidth	DC to 1 kHz	DC - 1 Hz	1 Hz - 80 Hz

* Goal of R&D was to demonstrate key parameters in beam studies at APS

APS-U ORBIT FEEDBACK PROTOTYPE

J. Carwardine, et., al. International Beam Instrumentation Conference, 9-14 Sept. 2018, Shanghai

Argonne

ORBIT FEEDBACK SYSTEM MODEL

PROTOTYPE FAST ORBIT FEEDBACK PROCESSOR DATAFLOW

- FPGA manages bpm and corrector data-streams
- DSPs perform orbit feedback computations

BUILT-IN DYNAMIC-SYSTEM ANALYZER

- Need a means of evaluating effects of latency and regulator tuning
 - Method of dividing open-loop and closed-loop PSDs is noisy and imprecise
 - Dynamic-system analyzer approach: measure response to known excitation

- Multiple simultaneous measurement channels
- Beam-based measurement of frequency- and time-domain responses
- Resolve differences in transfer-function to <10Hz
- Closed-loop Response Matrix measurements

MEASURING ORBIT FEEDBACK EFFECTIVENESS

Plots show the attenuation response (fraction of motion remaining with feedback enabled)

- At low frequencies, there is more than 40dB attenuation.
- Amplification at higher frequencies corresponds to overshoot in the step response.

BEAM-BASED MEASUREMENT OF CLOSED-LOOP PERFORMANCE VS PROCESSING LATENCY

44 usec (1 tick) of added processing latency costs ~100Hz in bandwidth

MEASURED PERFORMANCE: REDUCTION IN CUMULATIVE RMS MOTION

RMS beam stability goals for APS-U have been demonstrated on APS

Argonne

18

J. Carwardine, et., al. International Beam Instrumentation Conference, 9-14 Sept. 2018, Shanghai

PARAMETERS – COMPARISON OF PRESENT AND NEW

Present system (circ. 1995)

Parameter	APS-U design	'Datapool'	RTFB
Algorithm implementation	'Unified feedback' algorithm	Separate DC slow and	and AC systems for fast correctors
BPM sampling & processing rate	271 kHz (TBT) 🛛 🖌	10 Hz	1.6 kHz
Corrector ps setpoint rate	22.6 kHz 💉	10 Hz	1.6 kHz
Signal processors (20 nodes)	DSP (320 GFLOPS) + FPGA (Virtex-7)	EPICS IOC	DSP (40 MFLOPS)
Num. rf bpms / plane	570 (14 per sector)	360	160 (4 per sector)
Fast correctors / plane	160 (4 per sector) 🖌	-	38 (1 per sector)
Slow correctors / plane	320 (8 per sector) 🖌	282	-
Fast corrector ps bandwidth	10 kHz 🖌	-	1 kHz
Fast corrector latency	<10 us 🗸 🗸	-	~250 usec
Closed-loop bandwidth	DC to 1 kHz	DC - 1 Hz	1 Hz - 80 Hz

Demonstrated

Demonstrated in a double-sector

J. Carwardine, et., al. International Beam Instrumentation Conference, 9-14 Sept. 2018, Shanghai

SUMMARY

Small APS-U beam sizes lead to very challenging orbit stability goals

- APS-U fast orbit feedback system uses the same architecture and functionality as the 20-yr old APS RTFB, but is implemented using 'modern' components
 - 4000-fold increase in performance vs 1995-era processors
 - Hybrid DSP-FPGA processor chosen over FPGA-only implementation

APS-U fast orbit feedback controller has been prototyped on the present APS

- Unified feedback algorithm combines fast and slow correctors without compromising spatial or dynamical performance (replaces present 'woofer/tweeter' scheme).
- 22.6 kHz orbit correction rate with 16 bpms and 8 fast correctors per sector per plane.
- Unique diagnostic and measurement capabilities are built into the controller
- Parametric dynamical model for testing 'optimal' control techniques.
- All key parameters for APS-U fast orbit feedback system design have been demonstrated during beam studies, including 1kHz closed-loop bandwidth

THANK YOU FOR YOU ATTENTION

DEPARTMENT OF NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

