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Part I. Introduction to Machine Learning
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• Tasks that are extremely easy and obvious for us are difficult to program in 
traditional ways

• Impossible to learn every possible rule to perform a task
➢ learn from examples instead
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Teaching machines to learn from experience
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Teaching machines to learn from experience

Cat?



• Computer vision
• Speech recognition
• Natural language and text 

processing
• Face recognition
• Financial market analysis, risk 

prediction

• Search engines
• Medical diagnostics
• Transactions fraud detection
• Recommendation engines, advertising
• Robotics, automation
• Video games
• Self-driving cars
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Machine Learning is extremely successful in many 
different fields:
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http://yann.lecun.com/exdb/mnist/

Y. LeCun, et.al, "Gradient-based 
learning applied to document recognition"

D. Changxing, T. Dasheg, "Pose-invariant face recognition with homography-based normalization"

The ImageNet project
• Visual objects recognition (up to 78% accuracy on 1000 object classes)
G. E. Hinton et.al, "ImageNet Classification with Deep Convolutional Neural Networks"

MNIST handwritten digits dataset

Face recognition and reconstruction
• Automatic detection of semantic regions
• Specific "layers" are sensitive to certain regions ( e.g. 

eyes, nose, lips)

http://yann.lecun.com/exdb/mnist/
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• First match against Go European champion in 2015,
5:0 for AlphaGo

• In 2017 AlphaGo surpassed the performance of its previous versions 
and became the strongest Go player of all time *

* Silver, David et al. “Mastering the game of Go without human knowledge.” Nature 550 (2017): 354-359.

High Energy Physics

• ML is used in dark matter search, jets 
recognition, particle tracking, neutrino 
classification, shower simulations

AlphaGo from Google

Ben Nachman, CERN 
Data Science Seminars
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Relevant ML concepts and definitions

Supervised Learning Unsupervised Learning Reinforcement Learning

• Input/output pairs available
• Make prediction for 

unknown input based on 
experience from given 
examples

• Only input data is known
• Learn structures and 

patterns

• No training data
• Interact with an environment
• Trying to learn optimal 

sequences of decisions

"… computer programs and algorithms that automatically improve with experience by 
learning from examples with respect to some class of task and performance measure, 
without being explicitly programmed." *

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.

Automatic spam detection,
object detection in computer 
vision, speech recognition, 

predictive control

Anomaly detection, pattern 
recognition, clustering, 

dimensionality reduction

Robotics, industrial 
automation, dialog systems



• Basic processing unit = neuron (or perceptron) with following parameters:
➢ Weights w from the inputs 
➢ Activation function f
➢ Output y of a single neuron: 𝑦 = 𝑓 σ𝑥𝑖𝑤 + 𝑏

• Neurons are stacked into layers
• Connected layers build a network
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Artificial Neural Networks
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Many different architectures:
• Hidden layers increase the 

complexity of the network and allow to 
solve non-linear problems

• "Deep Learning"
• Architecture heavily depends on 

particular problem
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Artificial Neural Networks

http://www.asimovinstitute.org/neural-network-zoo/



• Universal Approximation Theorem
A simple neural network including only a single hidden layer can approximate any 
bounded continuous target function with arbitrary small error.
(Cybenko, 1989, for sigmoid activation functions)
• How does the learning work in practice?
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Artificial Neural Networks

Training 
input data

Function with adjustable 
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss:
e.g. MSE, MAE

Adjust parameters

example 1
example 2
example 3
.
.
.

Minimizing the loss
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Artificial Neural Networks

Backpropagation with Gradient Descent
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Artificial Neural Networks: Backpropagation and Gradient 
Descent optimization

• How to minimize loss L using weights w?
➢ Gradient Descent and its improvements (Stochastic Gradient Descent, AdaGrad, Adam)

• Forward step: compute and save intermediate computations
• Final loss is composed by output of nonlinear hidden layers
• Backward step:

➢ For each layer, compute gradient of loss w.r.t. parameters
➢ Update parameters 𝑤𝑡+1 = 𝑤 𝑡 + 𝛼

δ𝐸

𝛿𝑤

learning rate α to control the size of the gradient step
• Repeat until parameters are stable or desired loss is achieved: when to stop the training?
➢ Validation set is needed to determine when to stop the training to obtain an optimal model
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Training and generalization: no perfect model needed!

Simple models underfit
• Derivate from data (high bias)
• Do not correspond to data 

structure (low variance)

Complex models overfit
• Very low systematical deviation

(low bias)
• Very sensitive to data (high variance)

Bias-Variance tradeoff



• Split the input data based on a sequence of variables 
(thresholds) to estimate the target output value

• threshold selection depends on the chosen 
algorithm
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Decision Trees

• Leaves specify the predicted value of the target output 
variable

• Choose parameter and threshold for splitting aiming to 
minimize the difference between the value in the leaf and true 
value

• e.g. Mean Square Error for regression
• Cross-entropy for classification

M. Kagan, CERN Academic 
Training Lectures



• After the tree is constructed, prediction can be 
made by following the edges until one of the 
leaf nodes is reached

• Simple to understand and visualise
(depending on the tree depth)

• Suitable for regression and classification
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Decision Trees



Single trees tend to overfit data and can be unstable to 
small variations in data
▪ Ensemble methods: Train several slightly different 

models and take majority vote/ average of the 
prediction

Random Forest is one of the most commonly used 
algorithms

• Selects random subset of examples, train separate 
model on each subset

• Only random subset of features is used at each split
• Increase variance, tend not to overfit
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Ensemble methods

M. Kagan, CERN Academic 
Training Lectures



No labeled data is needed
Grouping or separating data objects into clusters
• Objects within a cluster are more similar than to objects from other 

clusters
• Similarity = distance metrics, density of objects inside a cluster, e.g. 

euclidean distance for two data objects p and q

• Summarized representation of the data
• Can find hidden patterns in the data, similarities and differences
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Clustering: Unsupervised Learning



Simplest clustering algorithm: K-means*
• Starting with randomly chosen data points as 

cluster centers, each point is assigned to the 
closest center

• Move centers to the centroids of the clusters, 
reassign the points to the nearest center

• Repeat until moving the centroid gives no 
improvement (based on total squared distance 
between each point and cluster centroid)
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Clustering

*Stuart P. Lloyd. Least squares quantization in PCM http://shabal.in/visuals/kmeans
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Useful resources for further introduction:

• Elements of Statistical Learning, Hastie, Tishirani, Friedman (2009)
• Pattern Recognition and Machine Learning, Bishop (2006)
• Stanford Course on Machine Learning: Ng https://cs229.stanford.edu/
• M. Kagan, Academic Lectures at CERN:

https://indico.cern.ch/event/619370

https://cs229.stanford.edu/
https://indico.cern.ch/event/619370


Part II. Application to Beam Diagnostics
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Beam Diagnostics
Limitations of traditional 
optimization and modeling 
tools?
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ML is a powerful 
tool for prediction and data 
analysis

Which limitations can be solved by ML 
with reasonable effort?

Motivation



Some traditional optimization methods: Newton's method, Simplex, Random 
walk optimization
• Resolve linear correlations between input parameters and optimization 

objectives
• Relatively small amount of target parameters
Limitations:
➢ How to deal with non-linear behavior?
➢ Required computational resources for large amount of optimization targets
➢ Objective functions, specific rules and thresholds have to be known
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Machine Learning methods can learn an arbitrary model
from given examples without requiring explicit rules



27

Potential for Machine Learning in Beam Diagnostics

Prediction and 
optimization of

beam parameters

Automation of
diagnostics and 

operation

Beam control and 
lattice imperfection

corrections

Detection of
instrumentation

defects



Predict parameters that are obtained by complex and slow diagnostics
Machine learning applied to single-shot x-ray diagnostics in an XFEL,
A. Sanchez-Gonzalez, et al. https://arxiv.org/abs/1610.03378
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Optimization and prediction of beam parameters

• Input: simple electron beam and x-ray parameter
• Output: photon energy, delay between two x-ray pulses, spectral shape
• Physical process behind correlations between input and output, but 

modelling of every experimental aspect is not possible

https://arxiv.org/abs/1610.03378
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Optimization and prediction of beam parameters
• More that 300 input variables initially, using correlation analysis and PCA reduced to 40
• Linear regression, Support Vector Regression, ANN
• Method is applicable at any XFEL facility

97% agreement on the 
prediction of spectral shape

More similar approaches for beam control and tuning systems using ANN:
A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S. V. Milton, P. Stabile, Neural Networks for Modeling and Control of Particle 
Accelerators, IEEE Transaction of Nuclear Science, 63 (2), 2016



Mapping between distorted IPM profile and original one
R. Singh, M. S., D. Vilsmeier, Simulation supported profile reconstruction with Machine Learning, Proc. of 
IBIC17 (WEPCC06)
D. Vilsmeier et al., Reconstructing Space-Charge Distorted IPM Profiles with Machine Learning Algorithms, 
Proc. of IPAC 2018 (WEPAK008)
• IIPM profile distortion is well studied, but the problem is too complex to use algorithms for 

profile correction
• Estimate the actual beam profile width from measured profile distorted by space charge
• Input: simulated distorted profiles
• Output: profile without distortion
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Optimization and prediction of beam parameters



• Methods used: Linear regression, SVR, ANN
• Already Linear regression gives very good results, best results achieved with ANN
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Optimization and prediction of beam parameters

M. Sapinski, HB2018, 
Daejeon Korea

• ANN learns about nature of space-charge deformation, not just about 
transformation of gaussian profile



Image-based prediction of multiple beam parameters
"First steps toward incorporating image based diagnostics into particle accelerator control 
systems using Convolutional Neural Network", A.L. Edelen et al. NAPAC16 (TUPOA51)

• Convolutional Neural Networks (CNN) are very successful in image recognition
• CNN and fully-connected ANN are used to incorporate image-based and non-

image-based data into the model to predict multiple beam parameters via 
regression:
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mean absolute errors are 
between 0.4% and 3.1% of 
the parameter ranges

Optimization and prediction of beam parameters



Exploring characteristics of beam loss patterns
Machine Learning applied at the LHC for beam loss 
pattern classification, G. Valentino, B. Salvachua, IPAC18 
(WEPAF078)
• Determining losses characteristics helps to understand 

the impact on luminosity and lifetime of accelerator 
components

• Input: Losses measured at BLMs
• Output: one of 4 types of beam losses (classification)
• Gradient Boosting Classifier*
• Applied during the beam squeeze in the LHC machine 

cycle
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Automation of operation and diagnostics

Classification success rates between 
95% and 100% have been achieved

*J. H. Friedman, “Greedy function approximation: A gradient boosting machine”. Ann. Statist. 29 
(2001), no. 5, pp. 1189- 1232



Automatic alignment of collimators
"Automatic angular alignment of the LHC collimators", G. Azzopardi et al., ICALEPCS17
“Spike Pattern Recognition for Automatic Collimation Alignment” , G. Azzopardi, No. 

CERN-ACC-NOTE-2018-0010
• Collimators have to be realigned during operation due to orbit shifts and beam 

parameter changes
• If loss spike is above a pre-selected threshold, the collimator is stopped: requires an 

expert to determine if the collimator actually has touched the beam
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Automation of operation and diagnostics

• Input: spike height, exponential decay and 
collimator jaw position​

• Output: if collimator is aligned or not 
(classification)



• Ensemble of several ML methods used – use the majority vote of all models
• Tested at the SPS and the LHC
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Automation of operation and diagnostics

50/52 correct classifications 
achieved in operation test



Opportunities to build beam diagnostics and control systems using ML has been studied 
already since early 90's
• Orbit corrections studies:

• E. Bozoki, "Neural Network technique for orbit correction in accelerators", 1994
• Y. Kijima, "A beam diagnostic system for accelerator using Neural Networks", 1992
• E. Meier, "Orbit correction studies using Neural Networks", 2012
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Beam control and lattice imperfection correction
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Beam control and lattice imperfection correction

• Lattice imperfections corrections: Y. Kijima, "A beam diagnostic system 
for accelerator using Neural Networks", 1992

• Detect dipole errors aiming to develop rapid commissioning
• Obtain dipole errors from measured beam position
• Small machine (8 BPMs, 8 fodo-cells)
• In the presence of more than 2 dipole field effects, the model performance 

decreased significantly

➢ Anyway, obtained results have shown first potential of ML to be applied on optics 
corrections
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Prediction of correction knobs settings at LHC

• Optics correction: identify quadrupole strength changes needed to 
minimize the deviation from nominal model

• Find knob settings = multivariate regression
• Simulations dataset, 100 000 samples
• Input: 1046 phase errors per beam (measured at 1046 BPMs in both 

planes)
• Output: 190 correction variables
• Several ML model have been applied, best performance on the test set 

achieved by Random Forest (explained variance: 0.99, MAE 0.02×10-5 )
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Target output: 
introduced errors

Input: Phase advance 
deviation from simulated 

measurements

Simulate 
measurements by 
introducing 
random errors to 
nominal model
• 1024 input 

parameters
• 190 outputs

Take a subset 
of simulated data in order 
to train the model

1. Build data set 2. Training

Errors predicted 
by the model

Errors introduced 
to simulate 
measurements

Impurity measure: 
e.g. Mean Squared Error

Split minimizing 
imputiry
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• Validation set to tune 
model parameters

• Test set to measure 
model performance

Most important parameter 
to tune by Random Forest:
• Number of trees
• Minimal number of 

samples in one split
• Maximum depth of a tree

3. Validation and Test

• Generalized model of your data
• Prediction can be made based on

new input since the model "knows" the correlations 
between input and output

Obtain the corrections 
based on a new
measurement

4. Prediction

New measurement
Correction 

predicted by the
model
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Comparison to traditional Response Matrix approach, 
expected β-beating after applying corrections:

Random forest outperforms traditional 
correction method

Further work:
• Include other sources of errors and BPM 

noise into simulations
• Train model on different optics settings to 

achieve better generalization
• Add real measurements and corresponding 

corrections to the training set
• Try other ML models

Preliminary result on 
simulated measurement



Anomaly detection: Detection of faulty BPMs

• Unphysical values coming from faulty BPMs signal still can be observed in 
reconstructed optics even after cleaning with available tools
➢ ML as an alternative solution to improve the analysis
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BPMs record the 
turn-by-turn data 
measuring the 
oscillations of 
the excited 
beam

Calculate optics 
functions (beta-
beating, dispersion, 
etc.) based on 
harmonic analysis 
of BPMs signal

+ data cleaning

Optics measurements at LHC



• 1024 BPMs per beam around the ring to measure turn-by-turn data
Statistical analysis of the past measurements shows that ~10% of BPMs are faulty
General Idea
• We do not want to replicate current results, no training data 

set available: Unsupervised learning approach
• Assuming most of the BPMs measure correctly, the bad BPMs should appear 

as an anomaly
• Consider combination of different parameters, separate the data
• 3 parameters: Tune, Amplitude, Noise
• Applied algorithms: K-means[1], DBSCAN[2], Local Outlier Factor[3], Isolation 

Forest[4]
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1. Stuart P. Lloyd. Least squares quantization in PCM
2. “A Density-Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise” Ester, M., H. P. Kriegel, J. 
Sander, and X. X.

3. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, 
May).
LOF: identifying density-based local outliers
4. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation 
forest.” Data Mining, 2008. ICDM‘08.

Anomaly detection: Detection of faulty BPMs
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Isolation Forest
• Randomly selects a parameter and then randomly selects a split between minimum and 

maximum values of the selected parameter.
• Random tree: the number of splits

required to isolate a data point is
equivalent to the path length
from the root to the terminating node.

• Forest: Many random trees perform
the splitting – path length, averaged
over the forest is a score of "normality".

• Shorter paths are produced for anomalies.
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IF cluster analysis on arcs measurements of tune, amplitude and 
signal noise in horizontal plane and its 2D-projection:
The data is normalized to the range [0,1] and separated into IR and Arcs BPMs due to the different 
data points distribution in these regions
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β-beating from the measurement cleaned with SVD before and 
after applying IF:

• This method is fully integrated into 
optics measurements at LHC

• Successfully used during beam 
commissioning and machine 
developments in 2018 under 
different optics settings

Isolation
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Possible alternative: Autoencoder

General idea for faulty BPMs detection:
• Since the majority of BPMs are good, the trained model will learn the behavior of valid signal
• The loss function will measure the difference between a given point and the learned general case
• Loss above a defined threshold -> anomaly detected!

How does an autoencoder work?
• Neural Network with specific structure​
• Tries to reproduce in its output whatever comes in 

the input: f(x) = x​
• Encoder: compressing the input data to lower 

dimensions​
• Decoder: Reconstructing the data into original input



• Maintenance of accelerator systems
• Dynamic aperture computation avoiding costly simulations
• Reduction of the complexity of current analysis methods using 

feature importance and dimensionality reduction methods (e.g. 
autoencoders and decision trees)

• Example: Beam lifetime optimization at the LHC, 
https://indico.cern.ch/event/738306/
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Potential further applications

https://indico.cern.ch/event/738306/


Part III. Recommendations and conclusion
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• Simultaneous optimization of several beam parameters
• Prediction of beam behavior
• Automation of diagnostics and operation
• Lattice imperfection correction
• Detection of instrumentation defects

… more great ideas are welcome during discussions!
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Where can we use ML in Beam Diagnostics?



• Frameworks to use:
• Prototyping, fast and easy implementation (very good documentation):

http://scikit-learn.org/
• High-level package for Neural Networks: – https://keras.io/
• Deep Learning, specific complex model architectures:

https://www.tensorflow.org/
http://deeplearning.net/software/theano/

51

Practical advice
• Often data preprocessing is needed before any model can be applied:

rescaling, feature engineering, denoising, outlier elimination:
➢ data vizualisation can help

• Start with simple models - increase complexity only if needed
• Estimate model generalization (75% train, 15% validation, 10% test)

http://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/


• Important to identify where ML can surpass traditional methods
• How much effort is needed to implement a ML solution? Is appropriate infrastructure 

for data acquisition available? Enough resources to perform the training?
• Good examples

• Automation of particular accelerator components e.g. collimation system
• Modeling is not possible, fast diagnostics needed, e.g. beam profile reconstruction, 

image-based diagnostics
• When training data is already available, e.g. optics measurement and correction, 

beam loss maps
• Unsupervised learning to apply directly on the data, to discover important correlations, 

e.g. detection of failures
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Conclusions



Thank you for your attention!
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Cat!
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