Temporal diagnostics of femtosecond e-bunches via X-ray intensity interferometry

"Simple & cost effective way to measure attosecond/femtosecond e-bunch duration"

Ichiro Inoue, Toru Hara, Yuichi Inubushi, Hitoshi Tanaka, and Makina Yabashi

RIKEN SPring-8 Center / SACLA

<u>Sering-8 Angstrom Compact free-electron LAser</u> *"SACLA"*

High gradient C-band accelerator (acceleration gradient: 35 MV/m)

In-vacuum short period undulator (λ_u=18 mm)

XFEL amplification can be achieved at a relatively short distance (~700 m)

Current layout of SACLA

Accelerator & undulator

of undulators

BL1: und. × 3 BL2: und. × 18 BL3: und. × 8 + und. × 13

Configuration of SACLA accelerator

T. Ishikawa et al., Nat. Photon. (2012).

Longitudinal diagnostic by RF deflector

- •Transverse C-band deflecting structure CCD
- Deflecting voltage: ~60 MV
- •Time resolution: 10-20 fs
- ← mainly determined by the projection size of e-beam

Typical temporal profile of e-bunch

 \rightarrow E-bunch duration is less than 15 fs

H. Ego et al., NIMA 795, 381 (2015).

Measurement of XFEL duration @SACLA

Experiment Single-shot spectrum + 200 **FEL simulation** ntensity (a.u.) 150 100 Two-stage XFEL focusing system Analyzer crystal 9.07 keV Silicon (553) 50 9060 9070 9080 9100 9040 9050 9090 9110 Pt/C multi-layer mirrors Photon energy (eV) Simulation Divergence \sim 22 mrad (d)⊿T=31 fs ^(e)⊿T=8.9 fs "⊿T=4.5 fs 100 Photon energy 80 60

-2

-1

0

X-ray pulse duration@SACLA: 6-8 fs (FWHM)

E-bunch duration should be comparable or less than 10 fs

Inubushi, *PRL* (2012). Inubushi, Inoue, *Appl. Sci.* (2017).

2 -2

0

-1

-2

-1

0

Relative photon energy (eV)

2

How to improve the resolution of longitudinal diagnostics ?

Temporal diagnostic of X-ray beam

Intensity interference of chaotic light

Intensities of chaotic light within spatial and temporal coherence lengths are correlated

"photons in chaotic light tend to be bunched"

Intensity interference of chaotic light

Intensities of chaotic light within spatial and temporal coherence lengths are correlated

"photons in chaotic light tend to be bunched"

Time-integrated intensity interference in pulsed light

By changing the coherence time of the optical pulse and measuring the degree of time-integrated intensity interference, we can determine the temporal intensity profiles of optical pulses.

Coherence time achievable by X-ray optical devices

Multilayer

product/multilayer/

Coherence time : 10-100 as

Crystal monochromator Si, Ge, SiO₂, InSb etc.. $\Delta E/E=10^{-3}-10^{-8}$ Coherence time : 100 as-10 ps

Undulator radiation itself $\angle E/E \sim 10^{-1} - 10^{-2}$ Coherence time : 1 as-10 as

Intensity interferometry @SACLA BL3 (10.5 keV XFEL)

Single-shot image of spontaneous X-ray pulse

Spontaneous X-ray radiation monochromatized by Si 111 reflection

cf. Averaged image over multiple pulse

Some portions of the X-ray beam is cut due to the limited aperture of the beamline

I. Inoue et al., PRAB 21, 080704 (2018).

Quantitative analysis of intensity interference

Normalized intensity correlation functions ("2D autocorrelation")

$$g^{2} = \frac{\langle I^{t}(r_{0})I^{t}(r_{0} + \Delta r)\rangle}{\langle I^{t}(r_{0})\rangle\langle I^{t}(r_{0} + \Delta r)\rangle}$$

< >: average over different pulses

Width:

spatial coherence length

Peak value:

determined by magnitude relationship between coherence time and pulse duration

Determination of e-bunch profile by intensity interferometry

Relationship between g²peak and coherence time

$$g_{peak}^{(2)} = 1 + \int \prod(\tau) \exp\left[-\left(\frac{\tau}{2\tau_c}\right)^2\right] d\tau$$
Intensity
$$P(t)$$
X-ray

$$\Pi(\tau) = \int P(t)P(t+\tau)dt$$
autocorrelation of temporal shape of X-ray pulse
I. Inoue *et al.*, *PRAB* 21, 080704 (2018).

Determination of e-bunch profile by intensity interferometry

Relationship between g²peak and coherence time

$$g_{peak}^{(2)} = 1 + \int \prod(\tau) \exp\left[-\left(\frac{\tau}{2\tau_c}\right)^2\right] d\tau$$
Intensity
$$P(t)$$
X-ray

$$\Pi(\tau) = \int P(t)P(t+\tau)dt$$
autocorrelation of temporal shape of X-ray pulse
I. Inoue *et al.*, *PRAB* 21, 080704 (2018).

Determination of e-bunch profile by intensity interferometry

Relationship between g²_{peak} and coherence time

$$g_{peak}^{(2)} = 1 + \int \prod(\tau) \exp\left[-\left(\frac{\tau}{2\tau_c}\right)^2\right] d\tau$$
Intensity
$$P(t)$$
X-ray

$$\Pi(\tau) = \int P(t)P(t+\tau)dt$$
autocorrelation of temporal shape of X-ray pulse
I. Inoue *et al.*, *PRAB* 21, 080704 (2018).

Evaluation of XFEL pulse duration

Comparison with other diagnostic methods

Interferometry of XFELs with different wavelengths

High-resolution spectrum

Osaka et al., in preparation.

Inubushi, Inoue, Appl. Sci. (2017).

Summary

- Intensity interferometry for temporal diagnostic of e-bunch/XFELs has been proposed and demonstrated.
- Our scheme is applicable to much shorter e-bunches since the coherence time of X-rays can be controlled to attosecond region with Xray optical devices.
- \overrightarrow{O} This scheme is cost effective and easily conducted. \rightarrow should be useful for cross-checking with other diagnostic systems.
- Single-shot temporal diagnostic scheme based on intensity interferometry is under development.