

Design of Beam Diagnostics System for Heavy Ion Accelerator Facility, RAON

Hyung-Joo Woo on behalf of Beam Diagnostic Group, RISP, IBS

The 7th International Beam Instrumentation Conference Sep. 10, 2018

Contents

- Review of RISP & RAON
- Beam Diagnostic System at RAON
- Beam Position Monitor
- BD at Injector Beamline
- BD at SCL Warm-section
- Beam Loss Monitor
- DAQ System
- Summary & Future Plan

RISP (Rare Isotope Science Project)

- Goal : To build a heavy ion accelerator complex, RAON, for rare isotope science researches
 * RAON Rare Isotope Accelerator Complex for ON-line Experiments
- Project period : 2011.12 2021.12
- Total budget : ~1.43 B\$ (Facilities ~0.46 B\$, Bldgs & Utilities ~0.97 B\$)

RAON Site : Sindong in Daejeon

RAON Layout

RAON Layout : Accelerator System

RAON Layout : RI & Experimental System

Bio-medical facility

Beam Diagnostic System at RAON

* SCL1 configuration is the same as the SCL3.

Diagnostics devices (except for SCL1, ISOL, NSF & HEEF) Nu	mber
Beam Current (FC, ACCT, Plastic detector) 16,	11, 7
Beam Position Monitor (BPM) 143	}
Beam Loss Monitor (BLM) 127	7
Beam Profile (Wire Scanner, Phosphor Screen) 43,	3
Beam Shape Monitor (Beam Bunch Shape) 4	
Emittance Scanner 2	

IT-WG-2

IT-Slit-6

IT-WG-1

IT-Slit-5

IT-FC-11

IT-Slit-1

IT-FC-12

IT-Slit-2

Beam Parameters & BD Functions

	Driver Linac			Post Acc.	Cyclotron	
Particle	H+	O ⁺⁸	Xe ⁺⁵⁴	U ⁺⁷⁹	RI beam	proton
Beam energy (MeV/u)	600	320	251	200	18.5	70
Beta (v/c)	0.79	0.67	0.62	0.57	-	0.37
Particle current (pµA)	660	78	11	8.3	-	1000
Power on target (kW)	400	400	400	400	-	70

Functions of Beam Diagnostics

- Initial commissioning & component tuning
 - FC, WS, BV, CT, BPMs (position, phase, TOF), etc
 - commissioning beam : ex. Ar(9+), 30 eµA, 50 µs, 1 Hz, ...
- During operation (on-line)
 - monitoring beam transport and acceleration function
 - BPM : beam position and phase
 - BCM : beam current and transmission(RFQ, SCL3(1), P2DT, SCL2, etc.)
 - BLM : beam Loss and link to machine protection
- Commissioning and during operation (on-demand)
 - 1-D, 2-D beam profiles (WS, EM)
 - Bunch length (FFC)

Beam Position Monitor

- Measurements : beam position, phase & relative intensity
- Type of BPM : considering signal strength and space limitation, button-type BPMs were selected instead of stripline BPM.
- 4 sizes of BPM : BPM-40, 50, 60
 & Large BPM at folding segment.
- Inspection of fabricated BPMs : vacuum, TDR and calibration (wire test).

* Please refer to the Poster (TUPC06) : 'Beam Position Monitor for SCL3 of RAON'

BPM Signals in Frequency domain

- CST Particle Studio
 Repetition: 81.25 MHz, ~ 12.3 ns
- Higher harmonic (≥2nd) signals are dominant after SCL11 (SCL31).
- Signal Processing with,
 - 1st, 2nd harmonics for MEBT & SCL11 (SCL31)
 - 1st, 3rd harmonics for SCL12(SCL32)
- 60 BPM modules in fabrication by a domestic company (Mobiis).

BPM-40

Beam Position Monitor

- 2

Wire Test Bench

BPM (FS)

Injector Beamline

Fast Faraday Cup (FFC)

• Coaxial Fast Faraday Cup (for SCL demo-facility)

• Stripline Fast Faraday Cup (SFFC)

SCL QWR Section

SCL3 Warm Section

- BPM inside of Magnetic Quadrupole
- Installation (& align) procedure of BDC/BPM/Beam Pipe assembly (with pure N₂ purging) in between two cryo-modules was prepared.

Beam Loss Monitor (BLM)

- Monitor regular (slow) and irregular (fast) losses
- Radiation Sources
 - Radiation : neutron, proton, gamma, electron, ion for >~7 MeV/u gamma, electron <~7 MeV/u
 - outside of Vacuum Chamber (secondary) : gamma, neutron
 - at low energy region (SCL31/SCL11) : very low radiation level expected
 - X-rays from SC Cavity & RF source is background source to BLM
- Source term simulation (MCNPX) has been done throughout Linac Tunnel
- MPS (Machine Protection System) requirements are checked
 - DBCM (Differential Beam Current Monitor) with ACCT networks is considered for primary fast loss detection.
 - CT networks : $ACCT1 RFQ ACCT2 MEBT ACCT3 SCL3 ACCT4 \dots$
- Beam Loss Collector, Plastic Scintillator and Proportional Counter are considered as BLM sensors.
- Please refer to the Poster (TUPA11) : 'Design Study of the Beam Loss and Halo Monitoring for the RAON Heavy Ion Accelerator'

MCNPX simulation

Energy spectrum

Neutron energy spectrum from Uranium beam

BLM Layout (preliminary)

HEBT

- Superconducting Linac : 1 BLM/warm section
- Bending Section (P2DT) : Beam Loss Points (charge selector, collimator, etc.)
- DBCM (ACCT networks) : Primary MPS input for fast loss

Section	BLM				
SCL31 (QWR)	DBCM	BLC	-		
SCL32 (HWR-A)	DBCM	BLC	-		
SCL32 (HWR-B)	DBCM	BLC	PD		
P2DT	DBCM	PD	PC		
SCL21 (SSR1)	DBCM	PD	BLC		
SCL22 (SSR2)	DBCM	PD	BLC		

*DBCM : Differential Beam Current Monitor BLC : Beam Loss Collector PD : Plastic Detector

PC : Proportional Counter

DAQ System

BPM – standalone (with timing, trigger, interlock, etc.)

- Libera Single Pass H has been used at SCL demo-facility.
- 60 modules (domestic) in fabrication (delivery in Jan. 2019).

Others (WS, FC, CT, BLM, etc.) with µTCA system

- CAENels AMC-pico: 8ch 20bit Pico-ammeter
- Vadatech DAQ523: 12ch 16bit volt-meter (for ACCT only)
- System design and test finished

Summary & Plan (I)

SCL-demo system

- Beam Diagnostic Chamber (BDC)-1 with RBS, Phosphor Screen, two Phase Probes, FFC was used for RFQ commissioning in November 2016.
- BDC-2 with WS & FC, two BPM-50 and SFFC was used for QWR commissioning in October 2017.

Injector beamline

- BDC (LEBT) with 2D-ES, WS, FC and beam viewer was fabricated this year.
- Beam Diagnostic System (for LEBT & MEBT) will be prepared this year.

SCL3 warm-section

- 60 Button-type BPMs were fabricated and tested, and 60 modules are under fabrication.
- 15 BDCs in SCL3 warm section is under fabrication.

P2DT/KOBRA beamline

- Design of Beam Diagnostic System was finished, and ready to order.
- Three Large BPMs (for P2DT) were fabricated and tested.

Summary & Plan (II)

BCM (ACCT)

- was tested at SCL Demo and showed good sensitivity to measure ~ few μA .
- 6 Bergoz ACCT are ready for installation

BLM (Beam Loss Monitor)

- Plastic Scintillator, Proportional Counter, BLC are under consideration.
- 3 PCs (Toshiba BLM) are under test.
- DBCM (ACCT networks) will be used for primary MPS.

DAQ System

- Readout and control systems with μ TCA are being designed and tested.

Schedule

- $2018 \sim 2020$: Fabrication (Injector \rightarrow SCL3 \rightarrow P2DT \rightarrow SCL2 \rightarrow SCL1 in the order)
- 2019~ 2021 : Installation & commissioning

Some difficult subjects

- Optimization of BLM system
- Design of BD system for low-intensity rare isotope beams from ISOL system.

Acknowledgements Gi-Dong Kim, Yeonsei Chung (RISP/IBS) Jangwon Kwon (Korea Univ.)

Thank you for Your attention !