NOISE IN RADIO/OPTICAL COMMUNICATIONS

Matjaž Vidmar

Fakulteta za Elektrotehniko, Ljubljana, Slovenia

List of figures: Noise in radio/optical communications

- 1 The dispute between famous scientists
- 2 Noise spectral density
- 3 Black-body thermal radiation
- 4 Received thermal-noise power
- 5 Thermal equilibrium
- 6 Natural noise sources
- 7 Sun-noise example
- 8 Receiver signal-to-noise ratio
- 9 Chain noise temperature
- 10 Amplifier noise figure
- 11 Relationship F<->T
- 12 Attenuator noise
- 13 Noise of active components
- 14 Hot/cold method
- 15 Oscillator phase noise
- 16 Leeson's equation
- 17 1/f noise
- 18 Resonator quality Q
- 19 Phase-Locked Loop (PLL)
- 20 Effects of phase noise
- 21 Phase noise without approximations
- 22 Lorentzian spectral-line width
- 23 Optical-fiber link
- 24 Opto-electronic oscillator
- 25 Q multiplier
- 26 Noise as test signal
- 27 Cryptographic-key source
- 28 Noise cryptography
- 29 LFSR pseudo-random sequences
- 30 Use of pseudo-random sequences

Fifth Solvay International Conference on Electrons and Photons (October 1927). The leading figures Albert Einstein and Niels Bohr disagreed:

Albert Einstein: "God does not play dice!"

Niels Bohr: "Einstein, stop telling God what to do!"

In telecommunications random signals are called noise. Noise impairs the performance of any communication link.

Noise is a macroscopic description of quantum effects!

1 - The dispute between famous scientists

Radio $h f \ll k_B T \rightarrow Rayleigh - Jeans approximation <math>B_f(f, T) \approx \frac{2k_B T f^2}{c_0^2} = \frac{2k_B T}{\lambda^2}$

3 – Black-body thermal radiation

$$Free space \epsilon_{0}, \mu_{0}$$

$$Free space \epsilon_{0}, \mu_{0}$$

$$Free space \epsilon_{0}, \mu_{0}$$

$$H_{1} = 0$$

$$H_{2} = \frac{2k_{B}T}{\lambda^{2}}$$

$$dA' = r^{2}d\Omega$$

$$\Delta \Omega = \frac{A_{eff}(\Theta, \Phi)}{r^{2}} = \frac{\lambda^{2}D(\Theta, \Phi)}{4\pi r^{2}} = \frac{\lambda^{2}|F(\Theta, \Phi)|^{2}}{r^{2} \iint_{4\pi}|F(\Theta, \Phi)|^{2}d\Omega^{*}}$$

$$P_{N} = \iint_{A'} \frac{1}{2} \cdot B_{f} \cdot \Delta f \cdot dA' \cdot \Delta \Omega = \iint_{4\pi} \frac{1}{2} \cdot \frac{2k_{B}T(\Theta, \Phi)}{\lambda^{2}} \cdot \Delta f \cdot r^{2}d\Omega \cdot \frac{\lambda^{2}|F(\Theta, \Phi)|^{2}}{r^{2} \iint_{4\pi}|F(\Theta, \Phi)|^{2}d\Omega^{*}}$$

$$P_{N} = \Delta f k_{B} \frac{\iint_{4\pi}|F(\Theta, \Phi)|^{2}d\Omega}{\iint_{4\pi}|F(\Theta, \Phi)|^{2}d\Omega} = \Delta f k_{B}T_{A}$$

$$A - \text{Received thermal-noise power}$$

$$Free space \epsilon_{0}, \mu_{0}$$

$$Free space \epsilon_{0}, \mu_{$$

 $T_s \equiv$ amplifier noise temperature reduced to the input!

<u>9 – Chain noise temperature</u>

Sensible definition $F = 1 + \frac{T_{RX}}{T_0}$ @ $T_0 = 290K \quad \leftarrow \rightarrow \quad T_{RX} = T_0(F-1)$

Logarithmic units $F_{dB} = 10 \log_{10} F = 10 \log_{10} \left(1 + \frac{T_{RX}}{T_0} \right) \quad \leftarrow \rightarrow \quad T_{RX} = T_0 \left(10^{\frac{F_{dB}}{10}} - 1 \right)$

<u>10 – Amplifier noise figure</u>

Amplifier device	Gain <i>G</i> [dB]	Noise tempe rature T_{RX} [K]	Noise figure F_{dB} [dB]
Vacuum tube with control grid (triode, pentode)	10↔20	1600↔9000	8⇔15
Vacuum tube with speed modulation (klystron, TWT)	20⇔50	3000↔30000	10⇔20
Parametric amplifier (room temperature)	10↔15	75↔300	$1 \leftrightarrow 3$
Si BJT, JFET or MOSFET (room temperature)	10↔20	75↔300	1↔3
GaAs FET or HEMT (room temperature)	10↔15	20↔120	0.3↔1.5
GaAs FET or HEMT (liquid-nitrogen 77K)	10↔15	7↔35	0.1↔0.5
Si or GaAs MMIC amplifier	10↔25	170↔1600	2↔8
Operational amplifier	40↔100	$10^4 \leftrightarrow 10^9$	16↔66

<u>13 – Noise of active components</u>

The unknowns $G \cdot \Delta f \cdot k_B$ cancel in the Y ratio!

$$Y = \frac{P_2}{P_1} = \frac{T_2 + T_{RX}}{T_1 + T_{RX}}$$

 $T_{RX} = \frac{T_2 - Y \cdot T_1}{Y - 1}$ $T_0 = 290 \text{K}$

$$F_{dB} = 10 \log_{10} \left[1 + \frac{T_2 - Y \cdot T_1}{(Y - 1) \cdot T_0} \right]$$

<u>14 – Hot/cold method</u>

Resistor type	Temperature	
Antenna into cold sky	~20K	
Liquid N ₂ cooled R	~77K	
Antenna into absorber	~290K	
R at room temperature	~290K	
Light-bulb filament as R	~2000K	
Ionized gas as R	$\sim 10^4 K$	
Avalanche breakdown	~10 ⁶ K	

The loaded resonator
quality Q_L defines the
oscillator phase noise!

$$L(\Delta f) = \frac{1}{2} \cdot \left[1 + \left(\frac{f_0}{2Q_L \Delta f} \right)^2 \right] \cdot \frac{k_B T_0 F}{P_0} \cdot \left(1 + \frac{f_C}{|\Delta f|} \right)$$

Variable-frequency oscillators	Q_{L}	Fixed-frequency oscillators	$Q_{\scriptscriptstyle L}$
RC VCO	~1	RC multivibrator	~1
BWO tube	~1	LC resonator	30⇔100
Varactor-tuned LC VCO	10↔30	Cavity resonator	1000↔3000
YIG $(Y_{3}Fe_{5}O_{12})$ oscillator	300↔1000	Ceramic dielectric resonator	1000↔3000
f_0 Frequency $f_0 \cdot N$		AT-cut quartz crystal (fundamental mode)	3000↔10000
$\int_{0}^{\infty} L(\Delta f) = \frac{f}{f \times N}$	$L(\Delta f) \cdot N^2$	AT-cut quartz crystal (third/fifth overtone)	10000↔30000
The phase noise multiplies with the square of the frequency multiplication factor!		Electro-optical delay line (\$)	$\sim 10^{6}$ (noisy!)
		Sapphire dielectric resonator (\$\$\$)	~3.10 ⁵
18 – Resonator quality	0	Red HeNe LASER	$\sim 10^{8}$

<u>18 – Resonator quality Q</u>

20 – Effects of phase noise

21 – Phase noise without approximations

Flat thermal noise can be neglected: device f_{MAX} or Planck law

LC-oscillator 1/f noise can be neglected

$$L(\Delta f) = \frac{1}{8} \cdot \left(\frac{f_0}{Q_L}\right)^2 \cdot \frac{1}{f_{HW}^2 + \Delta f^2} \cdot \frac{k_B T_0 F}{P_0}$$

Lorentzian line in Leeson's equation

$$\int_{-f_0}^{\infty} L(\Delta f) d\Delta f = 1 \approx \int_{-\infty}^{\infty} L(\Delta f) d\Delta f = \frac{1}{8} \cdot \left(\frac{f_0}{Q_L}\right)^2 \cdot \frac{k_B T_0 F}{P_0} \int_{-\infty}^{\infty} \frac{1}{f_{HW}^2 + \Delta f^2} d\Delta f =$$
$$= \frac{1}{8} \cdot \left(\frac{f_0}{Q_L}\right)^2 \cdot \frac{k_B T_0 F}{P_0} \cdot \left[\frac{1}{f_{HW}} \cdot \arctan\frac{\Delta f}{f_{HW}}\right]_{\Delta f = -\infty}^{\Delta f = \infty} = \frac{k_B T_0 F}{8P_0} \cdot \left(\frac{f_0}{Q_L}\right)^2 \cdot \frac{\pi}{f_{HW}}$$

$$f_{HW} = \frac{\pi k_B T_0 F}{8 P_0} \cdot \left(\frac{f_0}{Q_L}\right)^2$$

Example $f_0 = 3$ GHz $Q_L = 10$ $P_0 = 0.1$ mW F = 10dB $f_{HW} = 14$ Hz $f_{FWHM} = 28$ Hz

$$C = \frac{k_B T_0 F}{8 P_0} \cdot \left(\frac{f_0}{Q_L}\right)^2 = \frac{f_{HW}}{\pi}$$

$$L(\Delta f) = \frac{f_{HW}/\pi}{f_{HW}^2 + \Delta f^2}$$

22 – Lorentzian spectral-line width

<u>24 – Opto-electronic oscillator</u>

Very high T_{R} Difficult Q_M

<u>28 – Noise cryptography</u>

<u>29 – LFSR pseudo-random sequences</u>

Sound and appear as white noise!

Two-valued autocorrelation with a single very pronounced peak:

- synchronization headers for data frames
- spreading sequences in CDMA
- accurate time transfer in radio navigation (GPS, GLONASS)

Perfect frequency spectrum of uniformly-spaced lines and simple generation/checking:
test sequences for all kinds of telecommunication links
data scrambling (randomization)

as part of line coding

Peak-to-average power ratio:

LFSR: $\frac{P_{MAX}}{\langle P \rangle} \approx 1$ Noise: $\frac{P_{MAX}}{\langle P \rangle} \rightarrow \infty$

LFSR pseudo-random sequences are of NO cryptographic value: Berlekamp-Massey algorithm 1969

LFSR sequences are the result of pure mathematics that does not appear anywhere else in nature!

How to present ourselves to the inhabitants of a neighbor galaxy? How to find out that they look for us?

<u>30 – Use of pseudo-random sequences</u>