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FLASH 1s a free-electron laser driven by a superconducting linac at DESY in Hamburg. It generates high-brilliance XUV and soft X-ray pulses by ﬁ@l@dﬁ--— it Re
SASE (Self Amplified Spontaneous Emission). Many accelerating cavities are equipped with HOMBPMs (Higher Order Mode based Beam Position RFGuUn  Bunch Compressors ParASaL Albert Einste,
Lasers

Monitors) to align the beam and monitor the transverse beam position. However, these lose their position prediction ability over time. In this paper, we SMeV 150 MoV 450 MoV 1250 MoV

applied an efficient measurement and signal analysis routine with various data process methods including PLS (Partial Least Square) and SVD

(Singular Value Decomposition) to determine the transverse beam position. By fitting the HOM signals with a genetic algorithm, we implemented a FEL Experiments

315 m

new HOMBPM calibration procedure and obtained reliable beam prediction positions over a long time. A stable RMS error of about 0.2 mm by using
Schematic layout of FLASH facility

the spectra of signals and 0.15 mm by using signal fitting over two months has been observed.

Reference: M. Vogt, et al., “Status of the Soft X-ray Free Electron Laser FLASH”, 2017

HOMBPM Principle Dipole Signal Analysis

— Transverse wake potential — PLS and SVD
® The dipole mode signals were calibrated relative to the positions interpolated from BPMs. Therefore ,
e a linear relationship can be written as a compact matrix formula:
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® Mode polarization direction is usually not horizontal or A method based on genetic algorithm (GA) is used to fit the signal waveforms.
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® For short bunches, as is the case at FLASH, signals from bunch tilt f/‘@' 3

(b) are vanishingly small compared with beam offset (a).

HOMBPM Results

® Estimates predict that 5 mrad trajectory tilt (c) will excite the same

signal amplitude as 1 mm bunch offset (a) for 1.3 GHz cavities. . .
— Calibration Based on PLS and SVD
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Summary

® The existing HOMBPM system can be used for beam alignment in order to reduce the transverse wakefield effects.

at about 108 MHz by the ADC.

Reference: J. Frisch, et al.,, “Electronics and Algorithms for
HOM Based Beam Diagnostics”, 2006
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Also, it can deliver transverse beam position information, like a cavity BPM.

The RMS error is used as a figure of merit to evaluate the HOMBPM calibration and prediction. It depends on the
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Sample index measurement rangec.

The resolution of the system is determined for small position range, which is different from the RMS error.

For the case of analysing dipole spectra, the RMS error of the beam position stable at about 0.2 mm over months for a

beam range of about 10 mm x 10 mm.
With a newly developed method based on signal fitting we obtained a lower RMS error of around 0.15 mm.




