
LOW VS HIGH LEVEL PROGRAMMING FOR FPGA
Jan Marjanovic∗, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
From their introduction in the eighties, Field-

Programmable Gate Arrays (FPGAs) have grown in
size and performance for several orders of magnitude. As
the FPGA capabilities have grown, so have the designs.
It seems that current tools and languages (VHDL and
(System)Verilog) do not match the complexity required for
advanced digital signal processing (DSP) systems usually
found in experimental physics applications. In the last
couple of years several commercial High-Level Synthesis
(HLS) tools have emerged, providing a new method to
implement FPGA designs, or at least some parts of it. By
providing a higher level of abstraction, new tools offer a
possibility to express algorithms in a way which is closer
to the mathematical description. Such implementation
is understood by a broader range of people, and thus
minimizes the documentation and communication issues.
Several examples of DSP algorithms relevant for beam
instrumentation will be presented. Implementations of
these algorithms with different HLS tools and traditional
implementation in VHDL will be compared.

INTRODUCTION
According to [1], FPGAs have reached its fourth age. Af-

ter the "Age of Invention", "Age of Expansion" and "Age
of Accumulation" there are devices with enough capacity to
include the entire system on a single chip [2]. Although the
need to efficiently use the resources provided by the FPGA
is still present, the main challenges are managing the com-
plexity of the design and integration of 3rd party IP cores
(e.g. DDR3/4 memory controllers, PCIe blocks, DMAs, 1
and 10 Gigabit Ethernet MAC, processors, DSP blocks...).

Numerous approaches to provide a higher level of abstrac-
tion were and are presented, mostly by academia, but also by
the commercial vendors. One tool which successfully made
a transition from an academic tool [3] to a tool in FPGA
engineer’s toolbox is Xilinx Vivado HLS.

Several studies of HLS vs RTL can be found in the liter-
ature. Vendors of the tools are compelled to present their
tools in the nicest way [4] or with usually simplified exam-
ples. Some of the studies are also quite general [5] or the
examples are simplified versions of the problems from exper-
imental physics [6]. In some cases comparison is valuable
but only partially relevant for experimental physics applica-
tions [7–9].

The framework described in [10] provides a method to
develop applications in Matlab for certain MicroTCA boards.
Vivado HLS is also used in 10G and 40G Ethernet accelera-
tors, described in [11], and for two real-time data acquisition
applications (crystal identification and timestamp sorting),

∗ jan.marjanovic@desy.de

described in [12]. Recently, Vivado HLS was used for the
development of hls4ml [13], a machine learning framework
for particle physics.

In the rest of the paper, three examples of modules relevant
for experimental physics will be presented. Implementations
in VHDL and C++ targeting Vivado HLS are presented side-
by-side. Interesting snippets of the code are presented to
highlight the differences in the two languages, and to give
the reader a possibility to compare the readability of the code
for himself or herself. Number of lines of code (reported
by cloc[14]), resource usage and minimal clock period (=
1/ fmax) for both implementations are also reported.

There are several reasons to base the evaluation on Vivado
HLS:

• Author has considerable experience both with Xilinx
FPGAs in general and with related tools (Vivado,
Vivado HLS)

• Xilinx FPGAs are heavily used at DESY and on
MicroTCA AMC boards

• The created IP integrates nicely with the rest of the IPs
in Xilinx ecosystem

• Vivado HLS is significantly cheaper than other HLS
software suites; therefore it is very likely that industrial
partners will have access to it

The latest version available at the time of the writing,
Vivado HLS 2018.2, was used for the examples in this paper.

Several other High-Level Synthesis software suites exists,
such as Intel HLS Compiler, LabVIEW FPGA, Mathworks
HDL Coder, Cadence Status, Mentor Graphics Catapult, and
Synopsys Synphony C Compiler. Some open-source tools,
such as Panda Bamboo and LegUp are also available. These
tools were not considered for this paper.

EXAMPLES
To better illustrate the differences, the advantages and

the shortcomings of both methods, three examples will be
compared. The examples are presented in the order of com-
plexity, simplest first.

The first example, linearization function, requires high
throughput, but it is in its core quite simple - each sample
is processed on its own; there are no dependencies between
the samples. The scheduler has an easy task pipelining the
operations.

The second example, two-dimensional mean and standard
deviation is slightly more complex; because the samples
need to be accumulated together, scheduler needs some help
from the designer to be able to pipeline the operations.

The third example, IIR filter is a well studied topic in
digital signal processing [15]. In the case presented here,

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

7. Data acquisition systems
THOA01

527

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

we require that the filter can process one sample per clock
cycle, which would demonstrate whether the HLS compiler
is able to schedule the operations to satisfy this requirement.

Example 1: Linearization Module
In the following section, we look at the linearization trans-

fer function, providing harmonic spur suppression in data
acquisition system for DFMC-DSx00.

The ADC on DFMC-DSx00 is capable of producing 12-
bit samples at maximum rate of 800 MSPS. To simplify the
timing closure for the DSP modules in the system, the data
from ADC is parallelized into 4 lanes, running at 200 MHz.
The output from the ADC interface core is a 128-bit wide
AXI4-Stream interface. The interface for DSx00 is shown
in Figure 1.

Figure 1: DFMC-DSx00 interface module on KCU105 eval-
uation board.

The linearization module needs to connect to the ADC
interface module on the AXI4-Stream interface; it shall pro-
vide an AXI4-Stream slave port. The linearization module
shall also provide the output values on an AXI4-Stream mas-
ter port, which can be attached either to AXI DMA or some
other DSP module (e.g. decimation module) in the final
application.

The core of the linearization module is a 2nd order poly-
nomial to be evaluated for each of the acquired samples from
the ADC.

The transfer function can be described as:

y[n] =
N∑
i=0

ai xi[n],N = 2

where ai are statically determined coefficients.
One can immediately notice the simplicity of this ap-

proach. Only the current sample is considered at each point,
which means that problem is trivially pipelineable.

The top function for this module accepts an array of 8
12-bit numbers as input and it outputs an array of 8 12-bit
numbers. By providing the output of the same size as the in-
put, the use of this module is transparent for the downstream
DSP modules and the software. The module also provides a
bypass for the linearization polynomial, which is useful for
evaluating the effects of the linearization process in the real
system.

The main body of the core consist of just one simple for
loop to apply the linearize() function on each lane (8
lanes in total). Depending on the value of bypass variable,

the output is either direct assignment from the input or the re-
turn value of linearize() function. A compiler directive
is used to replicate (or unroll) each instance of the loop to
match the output data format from the upstream module.

At the core of the linearize() function is the imple-
mentation of Horner’s Rule [16].

Presented in Listing 1 is the core of the linearization
function, when implemented at Register-Transfer Level
abstraction level in VHDL. The implementation uses
ieee.fixed_pkg library to handle the fixed point numbers.
From this code listing it can be observed that the design
intent gets obscured by the pipelining needed to achieve a
high operating frequency (fmax).

Listing 1: Core of the linearization module, implemented in
VHDL

proc_stage : process (clk)
begin

if rising_edge (clk) then
-- multiply stage
if stage_valid (2*i) = ’1’ then
stage_out (2*i) <= resize (

arg => to_sfixed (in_data_prev (2*i),
in_data ’left ,
in_data ’ right)

* stage_in (2*i),
size_res => stage_out (0)

);
end if;

-- addition stage
if stage_valid (2*i+1) = ’1’ then

stage_out (2*i+1) <= resize (
arg => C_COEFS (i) + stage_in (2*i+1) ,
size_res => stage_out (0)

);
end if;

end if;
end process ;

On the other hand, Listing 2 shows that the implementa-
tion in C++ is much shorter, and the main arithmetic opera-
tions are also clearly visible.

Listing 2: Core of the linearization module, implemented in
C++ for Vivado HLS

output_t linearize (input_t in) {
internal_t tmp = 0;
for (int i = COEFFS_LEN -1; i >= 0; i--) {

tmp = COEFFS [i] + in * tmp;
}
return tmp;

}

Coefficients for this experiment are
(2.2854652782872233, 0.9962862193648518,
-2.506094726425692e-03).

Both implementations were synthesized and imple-
mented for Xilinx KCU105 Evaluation Kit with XCKU040-
2FFVA1156E device. Shown in Figure 2 is the result of the
automatic pipelining of the linearize() function. The
compiler (scheduler) has decided to use one clock cycle
for each of the multiplication and one clock cycle for the

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

THOA01
528

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

7. Data acquisition systems

Table 1: Comparison Between Implementations of 2nd Or-
der Polynomial in HLS vs RTL

resource HLS (in C++) RTL (in VHDL)
CLB 221 314

LUT 461 1081

FF 884 938

DSP 16 24

latency 6 6

interval 1 1

clk period 3.903 ns 4.954 ns

lines of code 52 170

addition. This helps satisfy the specified constraint for ini-
tialization interval of 1 and results in optimal utilization of
DSP48E2 blocks.

Figure 2: Report from Vivado HLS on implementation.

Shown in the Table 1 are the results of the implementation.
Because the HLS compiler takes advantage of the constant
propagation, the resource usage is lower compared to the
hand-coded VHDL implementation. Vivado HLS was able
to remove bits (and corresponding registers and wires) which
were determined to be 0 for all inputs.

Example 2: Two-Dimensional Mean and Standard
Deviation

The next investigated example will be an implementation
of algorithm to determine the center (or mean) and size (or
standard deviation) of two-dimensional Gaussian distribu-
tion. This module is used together with GigE Vision core
on DAMC-TCK7 AMC board. An example of distribution,
with annotated mean and standard deviation is shown in
Figure 3.

Before we start investigating the implementation, several
algorithms for calculation of standard deviation should be
considered.

The naive implementation involves two passes, in the first
one the mean of the dataset is determined, and in the second
one the standard deviation is calculated, by using the mean
value calculated in the first step.

The obvious downside of this algorithm is the need to visit
each sample twice, which would mean that some memory is

Figure 3: 2D Gaussian distribution; mean and standard de-
viation are annotated on the image.

required and the mean and the standard deviation cannot be
calculated on-the-fly.

The algorithm proposed in [17] only requires one pass
through the samples. It also provides better precision when
using floating point numbers, but since our implementation
will be implemented in integers this property is not relevant
in this case.

Based on the equation (15) in [17], for each step a mean
needs to be calculated according to the following formula:

Mk = Mk−1 + (xk − Mk+1)/k

where k is the iteration count.
Because the division in FPGA usually takes several clock

cycles and the algorithm is iterative in its nature (previously
calculated values are required to calculate new values), this
algorithm is not very suitable for implementation in FPGA.

To obtain an algorithm which mostly relies on multipli-
cation and addition, two operations which map nicely to
DSP48E1/2 primitives found in Xilinx FPGAs, the naive
formula can be rewritten as:

σ2 =
1
N

∑
x2
i − µ

2

It can be noted that for each sample only the multiplication
and summation is required, and division is only performed
twice at the end of the entire frame.

The code for this module can be found in ANNEX A.
From the function signature of the top function

two_dim_stdev(), it can be seen that the module accepts
stream of data and provides the mean and the standard devia-
tion both in X and Y direction. From the compiler directives
at the beginning of the function it can be noted that the in-
put is of type AXI-Stream, while the parameters are made
available on the AXI4-Lite interface.

The main body of the function is composed of four for
loops. The outermost two loops (loop_x and loop_y) tra-
verse the frame in X and Y dimension. The innermost two
loops are there to interleave the addition and multiplication

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

7. Data acquisition systems
THOA01

529

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Table 2: Report of the Utilization of Resources From Im-
plementation of Two-Dimensional Standard Deviation and
Mean in Vivado HLS

Resource HLS (in C++) RTL (in VHDL)
slice 764 -

LUT 1714 -

FF 2507 -

DSP 18 -

BRAM 14 -

SRL 38 -

latency 65663 1 -

interval 65663 -

clk period 3.095 ns -

operations on several accumulators, thus resolving the de-
pendency through an operation as described in [18].

The results of the implementation of the algorithm in
Vivado HLS are shown in Table 2. The VHDL module for
comparison is unfortunately not provided.

Example 3: IIR Filter
The final example presented in this paper is a 2nd or-

der IIR filter. The implementation in Vivado HLS will
be compared to the VHDL implementation from FPGA
Firmware Framework for MTCA.4 AMC Modules [19],
used in LLRF at DESY. The module ENT_IIR_TDF1_O2
is a highly-optimized IIR filter, implemented in Transposed-
Direct-Form-I to take full advantage of DSP48E1 modules.
Figure 4 shows how 5 DSP48E1 are used to implement the
filter in the VHDL implementation (each DSP48E1 is con-
figured to calculate the result in the form of B ∗ (D− A)+C).

Figure 4: Filter implementation architecture in ENT_IIR_
TDF1_O2.

The C++ code for this module can be found in ANNEX B.
The core of the implementation is a class BiquadFilter

1 = 128 clock cycles (4 pixels on a parallel interface) * 512 lines + 32 clock
cycles to initialize variables + 11 clock cycles to flush the multiply-
and-accumulate pipeline + 24 clock cycles to gather the accumulators +
48 clock cycles to perform the divisions + 7 clock cycles to calculate the
square root + 5 clock cycles used to shift the data from and to pipelines.

Table 3: Comparison Between Implementations of 2nd Or-
der IIR Filter in HLS vs RTL

Resource HLS (in C++) RTL (in VHDL)
CLB 32 16

LUT 156 0

FF 147 149

DSP 5 5

BRAM 0 0

SRL 0 0

latency 4 4

interval 1 1

clk period 4.704 ns 4.732 ns

lines of code 60 246

which provides operator() to calculate the next sample.
The sizes of variables are tuned to use the maximal width of
the DSP48E2 module.

For comparison, both VHDL implement and RTL im-
plementation were compiled for XCKU040-FFVA1152-
2 FPGA. The VHDL implementation was packaged
with Vivado IP Packager and synthesized (with -mode
out_of_context) and implemented on the FPGA.

Presented in Table 3 are the results of both implementation.
The VHDL implementation is just slighly more optimized
in resources, on the other hand the implementation in C++
is much shorter (in terms of lines of code) and the code is
easier to read.

This example relies heavily on DSP48E1/2 modules. In
the latest versions of Vivado HLS an undocumented li-
brary (dsp_builtins.h) was added with intrinsics target-
ing DSP48E1/2 module. Usage of these intrinsics could be
another way of implementing this example.

CONCLUSION AND OUTLOOK
Three examples of algorithm implementations in C++ for

Vivado HLS were presented. The examples presented here
illustrate some quite challenging algorithms with demanding
requirements. All examples were able to handle one or more
samples per clock cycle, which requires careful organization
of operations to allow for pipelining of the operations. It
can be seen that Vivado HLS provides an useful alternative
even in these challenging examples.

When the requirements are not so stringent, the usage of
Vivado HLS provides even more significant improvement
in productivity compared to the RTL workflow. This is spe-
cially true when the algorithms need to operate on floating-
point numbers, since the operations on floating-point num-
bers usually take several clock cycles and scheduling those
can be a non-trivial task.

Vivado HLS seems to be a useful tool to speed up the
development. Because of peculiarity of FPGAs, Vivado

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

THOA01
530

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

7. Data acquisition systems

HLS cannot turn any C or C++ code into an FPGA module,
the code needs to be written in a certain dialect of C or C++
(i.e. no memory allocation, careful selection of mathematic
operations and variable types, handling the state to allow for
pipelining, ...). Familiarity with the device primitives, such
as multiply-and-add block DSP48E1/2, is also an advantage.

Some authors argue that C-like languages are a poor
choice for High-Level Synthesis [20] and propose HLS com-
pilers from functional languages, such as Haskell [21]. High-
Level Synthesis remains an interesting field of research,
where new ideas are still proposed and existing tools are
still improved. Because of the decent Quality of Result and
improved productivity, it can be expected that HLS workflow
will become more and more popular.

ACKNOWLEDGEMENTS
I would like to thank Sven Stubbe (DESY) for the help

with the examples and for productive discussions about High-
Level Synthesis.

REFERENCES
[1] S. M. Trimberger, “Three ages of FPGAs: A retrospective

on the first thirty years of fpga technology,” Proceedings
of the IEEE, vol. 103, no. 3, pp. 318–331, Mar. 2015, issn:
0018-9219. doi: 10.1109/JPROC.2015.2392104.

[2] R. Sass and A. G. Schmidt, Embedded Systems Design with
Platform FPGAs: Principles and Practices, 1st. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2010,
isbn: 9780080921785, 9780123743336.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang, “High-Level Synthesis for FPGAs: From prototyp-
ing to deployment,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 4,
pp. 473–491, Apr. 2011, issn: 0278-0070. doi: 10.1109/
TCAD.2011.2110592.

[4] F. Sijstermans and J. Li, “Working smarter, not harder:
NVIDIA closes design complexity gap with High-Level Syn-
thesis,” http://go.mentor.com/4N9cP

[5] R. Nane et al., “A survey and evaluation of FPGA High-
Level Synthesis tools,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct. 2016, issn: 0278-0070. doi:
10.1109/TCAD.2015.2513673.

[6] Z. Jin, H. Finkel, K. Yoshii, and F. Cappello, “Evaluation of
the FIR example using Xilinx Vivado High-Level Synthesis
compiler,” Jul. 2017. doi: 10.2172/1375449.

[7] Z. Zhao and J. C. Hoe, “Using Vivado-HLS for structural
design: A NoC case study,” in FPGA, 2017.

[8] J. R. G. Ordaz and D. Koch, “On the HLS design of bit-level
operations and custom data types,” in FSP 2017; Fourth In-
ternational Workshop on FPGAs for Software Programmers,
Sep. 2017, pp. 1–8.

[9] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-
level synthesis of dynamic data structures: A case study using
Vivado HLS,” in 2013 International Conference on Field-

Programmable Technology (FPT), Dec. 2013, pp. 362–365.
doi: 10.1109/FPT.2013.6718388.

[10] P. Prędki, M. Heuer, Ł. Butkowski, K. Przygoda, H. Schlarb,
and A. Napieralski, “Rapid-X - an FPGA development
toolset using a custom Simulink library for MTCA.4 mod-
ules,” IEEE Transactions on Nuclear Science, vol. 62, no. 3,
pp. 940–946, Jun. 2015, issn: 0018-9499. doi: 10.1109/
TNS.2015.2413673.

[11] E. Schubert and U. Langenbach, “FPGA-based hardware
accelerators for 10/40 GigE TCP/IP and other protocols,” in
4th MicroTCA Workshop for Industry and Research.

[12] T. Marc-André, “Two FPGA Case Studies Comparing High
Level Synthesis and Manual HDL for HEP applications,”
2018. arXiv: 1806.10672 [physics.ins-det].

[13] J. Duarte et al., “Fast inference of deep neural networks in
FPGAs for particle physics,” Journal of Instrumentation,
vol. 13, no. 07, P07027, 2018. http://stacks.iop.org/
1748-0221/13/i=07/a=P07027

[14] CLOC - count lines of code. https : / / github . com /
AlDanial/cloc

[15] J. O. Smith, Introduction to digital filters with audio ap-
plications, online book, accessed (date accessed). http :
//ccrma.stanford.edu/~jos/filters/

[16] S. Xu, S. A. Fahmy, and I. V. McLoughlin, “Square-rich
fixed point polynomial evaluation on FPGAs,” in Proceed-
ings of the 2014 ACM/SIGDA International Symposium on
Field-programmable Gate Arrays, ser. FPGA ’14, Monterey,
California, USA: ACM, 2014, pp. 99–108, isbn: 978-1-4503-
2671-1. doi: 10.1145/2554688.2554779. http://doi.
acm.org/10.1145/2554688.2554779

[17] D. E. Knuth, The Art of Computer Programming, Volume
2 (3rd Ed.): Seminumerical Algorithms. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997, isbn:
0-201-89684-2.

[18] J. Hrica, “XAPP599 floating-point design with vivado
HLS,” 2012. https : / / www . xilinx . com / support /
documentation / application _ notes / xapp599 -
floating-point-vivado-hls.pdf

[19] L. Butkowski, T. Kozak, P. Prędki, R. Rybaniec, and B.
Yang, “FPGA Firmware Framework for MTCA.4 AMC Mod-
ules,” in Proceedings, 15th International Conference on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS 2015): Melbourne, Australia, October
17-23, 2015, 2015, WEPGF074. doi: 10.18429/JACoW-
ICALEPCS2015-WEPGF074.

[20] S. A. Edwards, “The challenges of synthesizing hardware
from C-like languages,” IEEE Design Test of Computers,
vol. 23, no. 5, pp. 375–386, May 2006, issn: 0740-7475. doi:
10.1109/MDT.2006.134.

[21] K. Zhai, R. Townsend, L. Lairmore, M. A. Kim, and S. A.
Edwards, “Hardware synthesis from a recursive functional
language,” in 2015 International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS),
Oct. 2015, pp. 83–93. doi: 10.1109/CODESISSS.2015.
7331371.

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

7. Data acquisition systems
THOA01

531

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ANNEX A:
STATISTICS MODULE IMPLEMENTED IN C++ FOR VIVADO HLS

include " two_dim_stdev .hpp"

void two_dim_stdev (
hls :: stream <input_t > &in , int &meanx , int &stdx , int &meany , int &stdy

) {

pragma HLS INTERFACE ap_ctrl_none port= return
pragma HLS INTERFACE axis register both port=in
pragma HLS DATA_PACK variable =in field_level
pragma HLS INTERFACE s_axilite port= meanx bundle =ctrl
pragma HLS INTERFACE s_axilite port=stdx bundle =ctrl
pragma HLS INTERFACE s_axilite port= meany bundle =ctrl
pragma HLS INTERFACE s_axilite port=stdy bundle =ctrl

const int N = 512; // frame size
const int PAR = 4; // number of parallel HW instances for accum

ap_uint <30 > accum [PAR* INPUT_W];
ap_uint <38 > accum_x [PAR* INPUT_W], accum_y [PAR* INPUT_W];
ap_uint <45 > accum_x2 [PAR* INPUT_W], accum_y2 [PAR* INPUT_W];

loop_init : for (int i = 0; i < PAR* INPUT_W ; i++) {
accum [i] = 0; accum_x [i] = 0; accum_y [i] = 0;
accum_x2 [i] = 0; accum_y2 [i] = 0;

}

loop_y : for (int y = 0; y < N; y++) {
loop_x : for (int x = 0; x < N/PAR/ INPUT_W ; x++) {

input_t z[PAR];
loop_pipe : for (int i=0; i < PAR; i++) {

pragma HLS PIPELINE II =1
in >> z[i];
loop_arr : for (int j = 0; j < INPUT_W ; j++) {

accum [i] += z[i]. arr[j];
ap_uint <10 > pos_x = (PAR* INPUT_W *x+ INPUT_W *i+j);
ap_uint <10 > pos_y = y;
accum_x [i] += pos_x *z[i]. arr[j];
accum_y [i] += pos_y *z[i]. arr[j];
accum_x2 [i] += pos_x * pos_x *z[i]. arr[j];
accum_y2 [i] += pos_y * pos_y *z[i]. arr[j];

}
}

}
}

ap_uint <30 > accum_tot = 0;
ap_uint <38 > accum_x_tot = 0, accum_y_tot = 0;
ap_uint <45 > accum_x2_tot = 0, accum_y2_tot = 0;

loop_gather : for (int i=0; i < PAR; i++) {
accum_tot += accum [i];
accum_x_tot += accum_x [i]; accum_y_tot += accum_y [i];
accum_x2_tot += accum_x2 [i]; daccum_y2_tot += accum_y2 [i];

}

meanx = accum_x_tot / accum_tot ;
meany = accum_y_tot / accum_tot ;
ap_int <16 > varx = accum_x2_tot / accum_tot - meanx * meanx ;
ap_int <16 > vary = accum_y2_tot / accum_tot - meany * meany ;
stdx = hls :: sqrt(varx);
stdy = hls :: sqrt(vary);

}

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

THOA01
532

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

7. Data acquisition systems

ANNEX B:
IIR FILTER MODULE IMPLEMENTED IN C++ FOR VIVADO HLS

include " iir_hls .hpp"

template <int FIX_W , int FIX_I >
class BiquadFilter {
public :

BiquadFilter (
ap_fixed <FIX_W , FIX_I > b0 ,
ap_fixed <FIX_W , FIX_I > b1 ,
ap_fixed <FIX_W , FIX_I > b2 ,
ap_fixed <FIX_W , FIX_I > a1 ,
ap_fixed <FIX_W , FIX_I > a2) :

b0(b0), b1(b1), b2(b2), a1(a1), a2(a2) {
}

ap_fixed <FIX_W , FIX_I > operator ()(ap_fixed <FIX_W , FIX_I > x){
ap_fixed <25 , 9> tmp_s1 = (x+s1) * -a1 + s2;
ap_fixed <48 , 9> tmp_s2 = (x+s1) * -a2 ;
ap_fixed <48 , 9> tmp_s3 = (x+s1) * b1 + s4;
ap_fixed <48 , 9> tmp_s4 = (x+s1) * b2 ;
ap_fixed <FIX_W , FIX_I > y = (x+s1) * b0 + s3;

s1 = tmp_s1 ;
s2 = tmp_s2 ;
s3 = tmp_s3 ;
s4 = tmp_s4 ;

return y;
}

private :
ap_fixed <FIX_W , FIX_I > b0 , b1 , b2 , a1 , a2;
ap_fixed <25 , 9> s1;
ap_fixed <48 , 9> s2 , s3 , s4;

};

void iir_hls (
ap_fixed <18 , 2> coeffs_b0 ,
ap_fixed <18 , 2> coeffs_b1 ,
ap_fixed <18 , 2> coeffs_b2 ,
ap_fixed <18 , 2> coeffs_a1 ,
ap_fixed <18 , 2> coeffs_a2 ,
ap_fixed <18 , 2> data_in ,
ap_fixed <18 , 2> & data_out

){

pragma HLS INTERFACE ap_stable port= coeffs_b0
pragma HLS INTERFACE ap_stable port= coeffs_b1
pragma HLS INTERFACE ap_stable port= coeffs_b2
pragma HLS INTERFACE ap_stable port= coeffs_a2
pragma HLS INTERFACE ap_stable port= coeffs_a1

pragma HLS INTERFACE ap_vld port= data_in
pragma HLS INTERFACE ap_ovld register port= data_out
pragma HLS INTERFACE ap_ctrl_none port= return

pragma HLS PIPELINE II =1

static BiquadFilter <18 , 2> f0(coeffs_b0 , coeffs_b1 , coeffs_b2 , coeffs_a1 , coeffs_a2);

data_out = f0(data_in);
}

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-THOA01

7. Data acquisition systems
THOA01

533

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

