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Abstract

A high intensity neutrino beam is utilized by a long-

baseline neutrino oscillation experiment, T2K at J-PARC.

To generate a high intensity neutrino beam, a high inten-

sity proton beam is extracted from a 30GeV Main Ring

Synchrotron (MR) to the neutrino primary beamline. In

the beamline, one mistaken shot can potentially do seri-

ous damage on the beamline equipment. To avoid such a

consequence, many beamline equipment interlocks to stop

the beam operation are implemented. Once an interlock is

activated, prompt and proper error handling is necessary.

We are developing a beamline expert system for prompt

and efficient understanding of the status to quickly resume

the beam operation. The beamline expert system consists

of three components such as a data collection component,

inference engines and a result presenting component. The

data collection component continuously collects the beam-

line information and the inference engines infer beamline

status from the beamline monitor data. Finally the result

presenting component presents the inferred results. The in-

ference engines are a key component in the expert system.

We are developing a Machine-Learning(ML) based infer-

ence engine for our expert system. ML is one of the most

active research fields in computing, we adopt the technol-

ogy from it. We report the progress of development of the

expert system, especially the prototype of ML based infer-

ence engine.

INTRODUCTION

The T2K (Tokai-to-Kamioka) experiment [1] is a long-

baseline neutrino oscillation experiment at J-PARC (Japan

Proton Accelerator Research Complex). A high intensity

neutrino/anti-neutrino beam is produced and propagates

295 km from J-PARC to Super-Kamiokande. In August

2017, T2K excluded CP-conservation at 95% confidence

level using the data until April 2017. In order to keep gen-

erating interesting physics, steady operation of the facility

is very important.

Figure 1 shows a layout of the neutrino experimental

facility (neutrino facility). The neutrino facility is com-

posed of the primary/secondary beamline and a near de-

tector (ND280). In the primary beamline, the high in-

tensity proton beam is extracted from the Main Ring syn-

chrotron (MR) and guided through super/normal conduct-

ing magnets to the target station. In the secondary beamline,

the proton beam hits a graphite target and produces pions.

These pions decay into muons and muon neutrinos in a de-

cay volume. The high intensity proton beam reached 485

∗ kazuo.nakayoshi@kek.jp

kW in 2018. The MR plans to upgrade the beam power up

to 1.3MW.
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Figure 1: Layout of the T2K experimental facility.

MOTIVATION

We handle a high intensity proton beam at the neutrino

facility. In the beamline, one mistaken shot can potentially

do serious damage to the beamline equipment. To avoid

such a consequence, a lot of beamline equipment interlocks,

called MPS (Machine Protection System) to stop the beam

operation are implemented. We have more than 800 inter-

lock sources. Multiple sources can cause an interlock at the

same time. For example, many BLM (Beam Loss Moni-

tors) sometimes issue an interlock simultaneously. In that

case, it is difficult for the beamline operators to understand

quickly what happened in the beamline and these can lead

to a time loss of the beamline operation.

When an essential beamline equipment fails, it may take

a long time to restore the beam operation. For example, a

helium compressor in the helium circulation system at the

target station was broken in January 2017. We lost about

two weeks of the beam time due to this trouble.

To improve these situations, we plan to introduce a beam-

line expert system to the neutrino facility.

BEAMLINE EXPERT SYSTEM

Figure 2 shows a schematic diagram of the beamline ex-

pert system. The beamline expert system consists of three

components such as a data collection component, inference

engines and a result presenting component. The data col-

lection component continuously collects beamline informa-

tion and the inference engines infer the beamline status from
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beamline monitor data. Finally the result presenting com-

ponent presents the inferred results.

The inference engine is a key component of the expert

system. Although a typical expert system inference engine

is rule-based [2], we adapt machine-learning(ML) based in-

ference engine in our expert system. We studied two types

of inference engines:

• a supervised trained engine for classification of MPS

events

• an unsupervised trained engine for detection of equip-

ment anomalies

The beamline expert system runs during the beam opera-

tion of the neutrino facility. If MPS is activated at the neu-

trino facility, the expert system infers the MPS reason and

presents a recovery procedure. For detection of equipment

anomalies, the expert system continuously collects the sta-

tus of the beamline equipment and informs the abnomality

to a beamline operator if it detects a sign of a equipment

anomaly.

Reason	of	

MPS,

Recovery	

procedure

Input
Output

Beam	shift

Inference	engine

MPS	status,

Interlock	Info.

Beamline

Equip.	status

Figure 2: Schematic diagram of the beamline expert system.

MPS CLASSIFICATION BY SUPERVISED

TRAINING

Actual Examples of MPS Events

Here we introduce some actual examples of MPS events.

A failure of the fast extraction magnets of the MR, such

as the septum magnets (FX septum) and/or kicker magnets

(FX kicker), cause simultaneous BLM interlocks at the pri-

mary beamline. And it has some possibility of doing se-

rious damage to the beamline. It is also difficult to quickly

understand the source of the MPS just looking at these BLM

interlock patterns. We carried out the initial evaluation of

the ML-based inference engine considering the following

cases:

• A case where the simultaneous BLM interlocks occur

at the primary beamline. This is caused by either a

failure of the FX septum or FX kicker magnets.

• A case where there is an MPS from a source other than

a BLM, such as the normal-conducting magnets, etc.

Our initial evaluation is to classify the MPS events into three

labels, which are (0) FX septum, (1) FX kicker or (2) others,

using the ML-based inference engine.

Model and Supervised Training

We evaluated the following procedure:

1. We built a model using TensorFlow™ [3], which is

a famous open-source library for ML developed by

Google.

2. Training was performed using training data which sim-

ulates the real MPS events. The model parameters

were optimized by a supervised training.

3. Finally we used the trained model as an expert system

inference engine, as well as to evaluate it using actual

MPS events.

We used a 2-layer neural network model for the evalua-

tion [4]. Figure 3 shows a schematic diagram of the 2-layer

model. The MPS bit stream is put into the input layer. The

output layer is 3 nodes and it is taken to represent the clas-

sification of FX septum, FX kicker or other.

.	.	.

...

Input	Layer

784	node
Hidden	Layer

500	node
Output	Layer

3 node

FX	Septum

FX	Kicker

Other
+

Other	MPS

734	ch

MPS	status

Interlock	info.

BLM	50	ch

Figure 3: 2-layer neural network model.

Performance Evaluation by Actual MPS Events

We evaluated the performance of MPS classification of 
the inference engine by actual MPS events during about 
six months beam operation. Table 1 shows the results of 
MPS classification. The inference engine predicted two FX 
kicker events although there were no FX kicker misfire MPS 
events during this period The accuracy was 98.3%. We in-

vestigated two mis-predicted MPS events in Table 1. One 
of them was an event where a beam instability in the MR 
occurred and a lot of BLM in the primary beamline were 
activated. On the other hand, it was found that another event 
was similar to the FX kicker misfire event by analyzing the 
beam monitor data. The horizontal position of the extracted 
beam in the primary beamline was shifted by about +0.2mm 
and the extracted horizontal angle was quite large. Figure 
4 shows the horizontal orbit for that spill shown in red line, 
as well as two normal spills shown in blue and black. This 
result suggests that even if a prediction fails, the expert sys-

tem can suggest to investigate the beam condition carefully 
to the beam operator in order to reduce the risk of potential 
for unknown failure condition.
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Table 1: Results of the Actual MPS Classification (Oct. 
2017 - Dec. 2017, Mar. 2018 - May 2018)

True Prediction

FX septum 0 0

FX kicker 0 2

Other 120 118

B
e
a
m
	h
o
ri
zo
n
ta
l	
p
o
si
ti
o
n
	[
m
m
]

ID	of	the	beam	position	monitor

DownstreamUpstream

Figure 4: The graph shows horizontal beam orbit which ex-

tracted in the primary beamline. The red line shows the

horizontal beam orbit corresponding to the mis-prediction

MPS event. The blue and black lines show normal events.

ANOMALY DETECTION BY

UNSUPERVISED LEARNING

We also investigated a method of anomaly detection

for the beamline equipment using ML. Figure 5 shows a

schematic diagram of the anomaly detection scheme in the

bemline expert system. An inference engine, which is dif-

ferent from the MPS classification one, infers anomaly of

the beamline equipment.

Autoencoder and PCA

We found that Autoencoder (AE), a model of NN, can

predict the anomaly. The essential part of the AE is a di-

mension reduction [5]. The anomaly can be detected by

comparing the input data with the predicted data which is

calculated from a restoration from the dimension reduced

data. We also studied PCA (Principal Component Analy-

sis). The PCA can be used as a tool of the dimension re-

duction. The PCA is also mathematically equivalent to AE

with some restrictions. For our initial study, we used the

PCA in our inference engine.

First, a matrix for the dimension reduction (F) is calcu-

lated by PCA. PCA can calculate the matrix by an eigen-

value decomposition of the covariance matrix of the input

data during the normal condition of the beamline equip-

ment. A matrix for the restoration (G) is also calculated

as the transposed matrix of F. Second, the predicted data

ŷ is calculated from the input data y and those matrices,

ŷ = GF y. Finally, a Loss defined by ∥y− ŷ∥2 is calculated

as a metric for the anomaly detection since it could be large

value if the predicted data is not consistent with the input

data.

Beamline

Equipment

status Anomaly

Dimension

reduction,

restoration

Normal	

Figure 5: Anomaly detection by beamline expert system.

Initial Evaluation Using Three-Dimensional 
Normal Distribution

We performed an evaluation of the inference engine us-

ing PCA for the anomaly detection. One hundred sets of a
three-dimensional normal distribution data {x1, x2, ..., x100}

(dataset-A) and another ten set of three-dimensional normal

distribution data {y1, y2, ..., y10}(dataset-B) are generated as

shown in Fig. 6. Dataset-A and dataset-B emulates the data

in normal and anomaly condition, respectively. We calcu-

lated the Loss for those data. Figure 7 shows the distribu-

tion of the Loss. The Loss of the dataset-B is larger than
one of the dataset-A and therefore it is possible to detect the

anomaly condition from the Loss values.

Figure 6: Three-dimensional normal distribution emulating 
a normal condition and emulating an anomaly data.

Actual Monitor Data of the Beamline Equipment

We also studied to use the PCA based inference engine to 
the actual beamline data. Our challenge is to detect a sign 
of the failure of the helium compressor happened in Jan-

uary 2017. Figure 8 shows a schematic view of the helium 
circulation system for the helium vessel. We utilized seven-

teen relevant monitor data, such as the supply pressure and 
temperature of helium gas. Figure 9 shows the distribution 
of each monitor data during a certain one hour when the 
helium compressor system was normally running. It looks 
that the distribution of those data are almost similar to the 
normal distribution. On the other hand, some of the vari-

ances was changing over the time, as shown in Fig. 10. 
Therefore, it is necessary to predict the present covariance
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Figure 7: The distribution of the reconstruction error

(Loss). By calculating the value of Loss, we know if the

anomaly occurs in the equipment.

matrix from the past data in order to utilize the PCA based

inference engine because the PCA assumes that the input

data follow a normal distribution which is constant over the

time.

He

Compressor

Heat

Exchanger

Heat

Exchanger

He	Vessel

Cooling water

temp/press

Cooling water

temp/press

He press

He temp

Supply

He temp/press

Rutrun

He temp/press

Figure 8: Schematic diagram of the helium circulation sys-

tem for the helium vessel.

SUMMARY AND FUTURE PROSPECT

We are developing ML-based beamline expert system for

efficient beamline operation. We developed a prototype in-

ference engine for the classification of MPS events and per-

formed initial evaluation using actual MPS events during

six months beam operation. The accuracy of the inference

engine was 98.3%. There were two mis-prediction during

the evaluation period. We investigated two mis-prediction

MPS events and found that one of MPS events was similar

to FX kicker misfire event by analyzing the beam monitor

data. The results indicate that the inference engine in the

supervised training is promising. We also studied anomaly

detection of the beamline equipment using the unsupervised

training. We confirmed the performance for anomaly detec-

tion by PCA using three-dimensional normal distribution

data. However, the variance of helium compressor data var-

ied with time. As a solution to this, we will develop another

engine which infers the present variance of data using the

past variance. We show possibility of efficient beamline op-

eration using ML-based expert system in this study.
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Figure 9: The distribution of the data for 1 hours. The horizontal axis shows the hour.
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