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Abstract 
Cavity bunch length measurement is used to obtain the 

bunch length depending on the eigenmodes exciting in-
side the cavity. For today's FELs, the longitudinal distri-
bution of particles in electron bunch (bunch shape) may 
be non-Gaussian, sometimes very novel. In this paper, the 
influence of bunch shape on the cavity bunch length 
measurement is analyzed, and some examples are given 
to verify the theoretical results. The analysis shows that 
the longitudinal distribution of particles in electron bunch 
has little influence on the cavity bunch length measure-
ment when the bunch length is less than 1 ps and the 
eigenmodes used in measurement are below 10GHz.  

INTRODUCTION 
Bunch length is one of the important characteristics of 

charged particle beam in accelerators. Compared with the 
traditional methods, bunch length monitor based on reso-
nant cavities has great potential especially for high quality 
beam sources, for it has superiority, such as simple struc-
ture, wide application rage, and high signal to noise ratio 
[1]. What's more, the eigenmodes of cavities are used in 
combined measurement of bunch length, beam intensity, 
position and quadrupole moment. For example, the mon-
opole modes can be used to measure the bunch length and 
the beam intensity [2]. At the same time, the dipole modes 
are always utilized to obtain the beam position offset [3]. 
What's more, we could decide the quadrupole moment by 
analyzing the TM220 modes of the square resonators [4]. 
Therefore, the measurement device shows the characteris-
tic of terseness and compaction. 

The present FELs show characteristic of very short 
bunch. For example, the bunch length of Shanghai soft 
X-ray free Electron laser (SXFEL) is several hundred 
femtoseconds. At the same time, the longitudinal distribu-
tion of particles in electron bunch (bunch shape) may be 
non-Gaussian, sometimes very novel. While analyzing the 
beam-cavity interaction, we assume the longitudinal dis-
tribution of particles in electron bunch is Gaussian in a 
general way. Then what is the impact of the non-Gaussian 
bunch on the cavity bunch length monitor? In this paper, 
the influences of the different bunch shapes on the cavity 
bunch length measurement are analyzed under different 
circumstances, and the results provide theoretical support 

for the future FEL bunch length measurements using res-
onant cavities. 

MESUREMENT OF GAUSSIAN BUNCH 
While passing through a cavity, an electron whose 

charge is q can excite a series of eigenmodes. The voltage 
amplitude of an eigenmode can be expressed as 

2q nV k q                  (1) 

Where kn is the loss factor which is related to R/Q of the 
eigenmode [5]. It can be seen that the voltage is related to 
the charge q. As for a bunch whose total charge is Qb, the 
voltage amplitude of an eigenmode excited inside the 
cavity is the superposition of the electrons in the bunch 
which arrive at the cavity at different times. The moments 
when the electrons arrive at the cavity depend on the lon-
gitudinal distribution of particles in electron bunch. As-
sume an electron bunch whose longitudinal normalized 
distribution function of electrons is f(t). The moment 
when the center of the bunch arrives at the center of the 
cavity is defined as zero time. So the voltage amplitude of 
an eigenmode when the charge arriving at the cavity at 
time t can be expressed as 

2 ndV k dq                 (2) 

Considering the voltage phases excited by electrons in 
different places is disparate, the voltage amplitude of an 
eigenmode can be written as 

m

m

m

m

m

m

m

m

e

2 e

2 ( ) e

2 ( ) e

n

n

n

n

t i t
b t

t i t
n t

t i t
n t

t i t
n b t

V dV

k dq

k I t dt

k Q f t dt





















 

 









         (3) 

Where ωn is the frequency of the eigenmode, tm is the 
range of the bunch longitudinal distribution, and I(t) rep-
resents beam current. In a general way, the longitudinal 
distribution of the bunch is regarded as Gaussian distribu-
tion, so 
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Where σ represents the bunch length. The voltage ampli-
tude of an eigenmode excited by the bunch whose charge 
is Qb can be described as 
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Both Qb and σ are unknown quantity, so we need two 
eigenmodes at least and the bunch length can be calcu-
lated by solving these equations. 
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That is the conventional method used to obtain the 
bunch length. 

THE INFLUENCE OF BUNCH SHAPE 
In this section, the influence of the longitudinal distri-

bution of particles in electron bunch on the bunch length 
measurement mentioned above will be analyzed. 

The root-mean-square value of the bunch longitudinal 
distribution is defined as bunch length σ. When the centre 
of the bunch is the origin of the normalized distribution 
function, the root-mean-square value is the same size as 
the standard deviation of the longitudinal distribution,  

2( )f t t dt



               (7) 

It means a centralized region of most particles, not the 
entire range of the bunch longitudinal distribution. Define 
the integral in Eq. (3) is the bunch shape factor Vshape,  
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Comparing Eq. (8) and Eq. (3), it can be seen that the 
voltage amplitude of an eigenmode excited by a particle 
and by a bunch are similar. The bunch shape factor Vshape 
is considered in Eq. (8). The following is the analysis of 
Vshape. The n-order Maclaurin series with Lagrange re-
mainder term can be expanded as 
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Where 0 < θ < 1. We extract the real part of Eq. (9) and 
take the sum of first two terms, 
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Considering that f(t) is the normalized distribution func-
tion, according to the definition of bunch length, Equation 
(10) can be described as  
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The approximation error can be expressed by the La-
grange remainder term, 
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Given f(t) > 0, divide Eq. (12) by Vshape, 

max

min

max

min

m

m

m

m

m

m

m

m

4

4

m

4
m

m

4
m

m

exp( )
[ ( ) ( ) ]

4!

( ) exp( )

( )
( )

4!

( ) exp( )

( )
[ ( ) ]

4!

exp( ) ( )

( )
cos( )

24

t
n

nt

t
shape nt

t
n

t

t

nt

t
n

t

t

n t

n
n

i t
f t t dt

V f t i t dt

t
f t dt

f t i t dt

t
f t dt

i t f t dt

t
t



















































 (13) 

The maximum of the approximation relative error can 
be obtained by this equation. The relationship between 
ωntm and the maximum of the approximation relative error 
is shown in Fig. 1. 

 
Figure 1: ωntm versus the maximum of the approximation 
relative error. 

It can be seen that we preferred smaller ωntm which 
means the approximate value in Eq. (11) approaches to 
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the value of Vshape. The bunch length of today's FELs is 
about hundreds of femtoseconds, and the entire range of 
the bunch longitudinal distribution is approximately from 
-2 ps to 2 ps. The frequency of the eigenmode used for 
measurement can reach to about 10GHz. In this case, 

51.03 10
shapeV


               (14) 

It can be seen from the results that we can take the ap-
proximation like Eq. (11) in spite of bunch shape and the 
approximation relative error is less than 1.03×10-5. The 
voltage amplitude of an eigenmode excited by a bunch 
can be written as 

2 2

2 2 (1 )
2

n
n b shape n bV k Q V k Q

 
        (15) 

The voltage is irrelevant to the longitudinal distribution 
of particles in electron bunch. Therefore, the bunch is able 
to be regard as Gaussian bunch in this case. 

VERIFICATION 
Many different kinds of bunch longitudinal distribu-

tions are shown in Fig. 2 to Fig. 8. There are the normal-
ized probability density function analytic expressions of 
uniformly distributed bunch, flat-topped bunch, parabolic 
bunch, Gaussian bunch, triangular bunch and two kinds of 
double-humped bunches, respectively. 

 
Figure 2: The normalized probability density function of 
uniformly distributed bunch. 

 
Figure 3: The normalized probability density function of 
flat-topped bunch. 

 
Figure 4: The normalized probability density function of 
parabolic bunch. 

 
Figure 5: The normalized probability density function of 
Gaussian bunch. 

 
Figure 6: The normalized probability density function of 
triangular bunch. 

 
Figure 7: The normalized probability density function of 
double-humped bunch 1. 

 
Figure 8: The normalized probability density function of 
double-humped bunch 2. 
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Their charges are all 1 nC and their bunch lengths 
(root-mean-square value of the distribution) are all 1 ps. 
The relationship between their corresponding shape fac-
tors Vshape and the eigenmode working frequencies ωn is 
shown in Fig. 9 and Fig. 10. Figure 10 is the larger ver-
sion of Fig. 9 at the low frequency part. 

 
Figure 9: The relationship between Vshape and the 
eigenmode working frequencies ωn. 

 
Figure 10: the larger version of Fig. 9 at the low frequen-
cy part. 

The imaginary lines in the above pictures represent the 
approximate expression Eq. (11). It can be seen that an 
eigenmode voltage excited by a bunch in cavity is irrele-
vant to the longitudinal distribution of particles in elec-
tron bunch when the frequencies of the eigenmodes used 
for measurement are below 50GHz. In that case, the re-
sults of the Gaussian bunch measurements are able to take 
the place of the results of the bunches with other shapes 
measurements. Even if the frequency of the eigenmode 
used for measurement is equal to 50GHz, the maximum 
relative error is merely 5.25×10-3. 

CONCLUSION 
In this paper, the impact of bunch shape on cavity 

bunch length measurement is analyzed in theory. The 
shorter the bunch, the less the influence from the longitu-
dinal distribution of particles in electron bunch is. For 
present and future FEL whose bunch length is less than 
1ps, the longitudinal distribution of particles in electron 
bunch do not have to be taken into account when we use 
the cavity to obtain the bunch length. The bunch is able to 
be regard as Gaussian bunch in that case. This conclusion 
provides theoretical support for the future FEL bunch 
length measurements using resonant cavities.  

REFERENCES 
[1] Q. Wang et al., “Design and simulation of high order 

mode cavity bunch length monitor for infrared free 
electron laser”, in Proc. 8th Int. Particle Accelerator 
Conf. (IPAC’17), Copenhagen, Denmark, May 2017, 
pp. 309-311, doi:10.18429/JACoW-IPAC2017-MOPAB082 

[2] Z. C. Chen, W. M. Zhou, Y. B. Leng, L. Y. Yu and R. X. 
Yuan, “Subpicosecond Beam Length Measurement Study 
Based on The TM010 Mode”, Phys. Rev. ST Accel. Beams, 
vol. 16, no. 7, p. 072801, Jul. 2013. 

[3] J. H. Su et al, " Design and cold test of a rectangular cavity 
beam position monitor", Chinese Physics C, vol. 37, no. 1, 
p. 017002, Jan. 2013. 

[4] J. S. Kim, R. Miller, and C. D. Nantista, “Design of a stand-
ing-wave multicell radio frequency cavity beam monitor for 
simultaneous position and emittance measurement”, Review 
of Scientific Instruments, vol. 76, no. 7, p. 073302, Jul. 
2005. 

[5] H. Padamsee, J. Knobloch, and T. Hays, RF Superconductiv-
ity for Accelerators 2nd Edition. Weinheim, Germany: 
Wiley-VCH, 2008. 

7th Int. Beam Instrumentation Conf. IBIC2018, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-201-1 doi:10.18429/JACoW-IBIC2018-MOPB10

MOPB10
100

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

9. Machine parameters measurements and others


