Author: Xu, S.
Paper Title Page
TUOC02
APS Upgrade Integrated Beam Stability Experiments in the APS Storage Ring  
 
  • J. Carwardine, N.D. Arnold, R.W. Blake, A.R. Brill, H. Bui, G. Decker, L. Emery, T. Fors, P.S. Kallakuri, R.T. Keane, R.M. Lill, D.R. Paskvan, A.F. Pietryla, N. Sereno, H. Shang, S. Veseli, J. Wang, S. Xu, B.X. Yang
    ANL, Argonne, Illinois, USA
 
  Funding: The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne) under U.S.Department of Energy Office of Science Contract No. DE-AC02-06CH11357.
An ultra-stable orbit will be essential to take advantage of the beam properties of the multi-bend achromat lattice of the APS Upgrade. Transverse beam dimensions are an order of magnitude smaller than for the present APS (14.7 microns x 2.8 microns in flat-beam mode), and consequently orbit stability tolerances are very challenging. The APS upgrade fast orbit feedback system uses a similar architecture to the present orbit feedback system, but while the present system corrects the orbit at 1.6 kHz using 160 bpms and 38 fast correctors per plane, design specifications for APS Upgrade call for orbit correction at 22kHz using 570 rf bpms and 90 photon bpms along with 160 fast correctors per plane. A major focus of the integrated beam stability R&D has been development and test of a prototype fast orbit feedback system using two sectors of the present APS storage ring for demonstration and validation of design parameters. Hardware/firmware implementation is discussed, and we present results from the R&D program covering both orbit correction and feedback control domains, including a novel algorithm that combines orbit correction for both slow and fast correctors down to DC.
 
slides icon Slides TUOC02 [9.767 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)