Author: Pietraszko, J.
Paper Title Page
TUPC03 Beam Quality Monitoring System in the HADES Experiment at GSI Using CVD Diamond Material 300
 
  • A. Rost, T. Galatyuk
    TU Darmstadt, Darmstadt, Germany
  • J. Adamczewski-Musch, S. Linev, J. Pietraszko, M. Traxler
    GSI, Darmstadt, Germany
 
  Funding: Work supported by the DFG through GRK 2128 and VH-NG-823.
The beam quality monitoring of extracted beams from SIS18, transported to the HADES experiment, is of great importance to ensure high efficiency data recording. The main detector system used for this purpose is the Start-Veto system which consists of two diamond based sensors made of pcCVD and scCVD materials. Both sensors are equipped with a double-sided strip segmented metalization (300 µm width) which allows a precise position determination of the beam position. Those senors are able to deliver a time precision <100 ps and can handle rate capabilities up to 107 particles/channel. The read-out of the sensors is based on the TRB3 system [1]. Precise FPGA-TDCs (264 channels, <10 ps RMS) are implemented inside FPGAs. The TRB3 system serves as data acquisition system with scaler capability. Analysis and on-line visualization will be performed in DABC [2]. Having the precise time measurement and a precise position information of the incoming beam ions one can monitor important beam parameters namely the beam intensity, its position during extraction and the beam time structure. In this contribution the general read-out concept will be introduced.
[1] A. Neiser et al., TRB3: a 264 channel high precision TDC platform and its applications, 2013 JINST 8 C12043.
[2] dabc.gsi.de, 30.05.2018
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC03  
About • paper received ※ 05 September 2018       paper accepted ※ 13 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)