Longitudinal phase space diagnostics for ultrashort bunches with a plasma deflector

with C. B. Schroeder², K. Floettmann³, B. Marchetti³, and A. R. Maier¹

I. Dornmair^{1*}

¹CFEL, University of Hamburg, LAOLA. ²LBNL, Berkeley, USA ³DESY, Hamburg, Germany

*irene.dornmair@desy.de

LAOLA. is a collaboration of

LUX Junior Research Group

Junior Research group at CFEL and Hamburg University

commission & operate 200 TW ANGUS laser system

build and operate the LUX beamline for laser-plasma driven undulator radiation

lux.cfel.de

Andi

Chris

Irene

Max

Niels

Vincent

Spencer

Matthias

Philipp

Paul

Manuel

Sören

Henning

Laser Plasma Acceleration (LPA)

- focus high power laser pulse into plasma target
 - typical laser parameters:
 - 1 -10 J pulse energy,
 - 30 fs pulse length,
 - $20\,\mu m$ spot size

target chamber @ LUX

photo: N. Delbos

Laser Plasma Acceleration (LPA)

- focus high power laser pulse into plasma target
 - typical laser parameters:
 - 1 -10 J pulse energy,
 - 30 fs pulse length,
 - $20\ \mu m\ spot\ size$
- Iaser excites wakefield
 - charge separation
 - ▶ typical scale: plasma wavelength 10 100 µm

target chamber @ LUX

Laser Plasma Acceleration (LPA)

high gradients

University of Texas: 2 GeV over 7 cm

W. Leemans et al., PRL 113, 245002 (2014)

LBNL: 4 GeV over 9 cm

Laser Plasma Acceleration (LPA) - Beam Quality

- challenges
 - stability
 - reproducibility
 - beam quality
- originate from
 - Iaser and plasma stability
 - injection mechanism

Laser Plasma Acceleration (LPA) - Beam Quality

Laser Plasma Acceleration (LPA) - Beam Quality

[1] A. Buck et al., Nat. Phys. 7, 543 (2011) [2] O. Lundh et al., Nat. Phys. 7, 219 (2011)

Plasma based current profile diagnostic

- Iaser drives linear wakefield
- inject electron bunch off-axis in y
- experiences streaking field
- advantages:
 - strong fields
 - short (plasma) wavelength
 - short target

I. Dornmair et al., PRAB 19, 062801 (2016)

Plasma based current profile diagnostic

- Iaser drives linear wakefield
- inject electron bunch off-axis in y
- experiences streaking field

- ▶ Electron beam from SINBAD LINAC ^[1]
 - ▶ E_{kin} = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - σ_x = 17 μm
 - detuned phase \Rightarrow spiky current profile

external injection setup diagnose bunch at injection position

RF accelerator

[1] SINBAD: R. Assmann et al., Proc. IPAC2014, Dresden, TUPME047

SINBAD LINAC: B. Marchetti et al., Proc. IPAC2015, Richmond, TUPWA030

I. Dornmair et al., PRAB 19, 062801 (2016)

- Electron beam from SINBAD LINAC
 - ▶ E_{kin} = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - σ_x = 17 μm
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - ▶ a₀ = 0.3
 - $\tau = 41$ fs (FWHM)
 - ▶ w₀ = 150 µm
- ▶ Plasma:
 - ▶ 1.10¹⁸ cm⁻³
 - ▶ I = 3.5 mm
- distance laser beam: 34 µm

I. Dornmair et al., PRAB 19, 062801 (2016)

- Electron beam from SINBAD LINAC
 - ▶ E_{kin} = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - $\sigma_x = 17 \,\mu m$
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - ▶ a₀ = 0.3
 - \bullet $\tau = 41$ fs (FWHM)
 - ▶ w₀ = 150 µm
- ▶ Plasma:
 - ▶ 1.10¹⁸ cm⁻³
 - ▶ I = 3.5 mm
- distance laser beam: 34 µm

I. Dornmair et al., PRAB 19, 062801 (2016)

- Electron beam from SINBAD LINAC
 - ► E_{kin} = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - σ_x = 17 μm
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - ▶ a₀ = 0.3
 - $\tau = 41$ fs (FWHM)
 - ▶ w₀ = 150 µm
- Plasma:
 - ▶ 1.10¹⁸ cm⁻³
 - ▶ I = 3.5 mm
- distance laser beam: 34 µm

- Electron beam from SINBAD LINAC
 - ▶ E_{kin} = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - σ_x = 17 μm
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - ▶ a₀ = 0.3
 - \bullet $\tau = 41$ fs (FWHM)
 - ▶ w₀ = 150 µm
- ▶ Plasma:
 - ▶ 1.10¹⁸ cm⁻³
 - ▶ I = 3.5 mm
- distance laser beam: 34 µm

I. Dornmair et al., PRAB 19, 062801 (2016)

Higher order field correlations

- E_y is curved in x and y
- streaking gradient smears over wide bunch
- independent of plasma length

$$\Delta \zeta \ge \frac{\sqrt{10}}{2} \left(\frac{2\sigma_y}{w_0}\right)^2 |\zeta|$$

- Electron beam from SINBAD LINAC
 - Ekin = 110 MeV
 - $\epsilon_{nx} = 0.09 \text{ mm mrad}$
 - σ_x = 17 μm
 - detuned phase \Rightarrow spiky current profile
- Laser (3 J pulse energy)
 - ▶ a₀ = 0.3
 - $\tau = 41$ fs (FWHM)
 - ▶ w₀ = 150 µm
- Plasma:
 - ▶ 1.10¹⁸ cm⁻³
 - ▶ I = 3.5 mm
- distance laser beam: 34 µm

Electron beam from SINBAD LINAC	theoretic
Ekin = 110 MeV	
$\epsilon_{nx} = 0.09 \text{ mm mrad}$	
• σ _x = 17 μm	5
• detuned phase \Rightarrow spiky current profile	
Laser (3 J pulse energy)	2.5
$a_0 = 0.3$	
$ ightarrow \tau = 41$ fs (FWHM)	(L L L D
w₀ = 150 µm	z ini
Plasma:	-2.5
▶ 1·10 ¹⁸ cm ⁻³	2.0
▶ I = 3.5 mm	
distance laser - beam: 34 µm	-5

Temporal resolution - higher order correlations

resolution degradation from curvature:

$$\Delta \zeta \ge \frac{\sqrt{10}}{2} \left(\frac{2\sigma_y}{w_0}\right)^2 |\zeta|$$

• wavenumber $k = 1.9 \times 10^5 \,\mathrm{m}^{-1}$

theoretical resolution: 96 attoseconds

Limitations - Beam Loading

- beam drives own wake
- modifies streaking field

- resolution degradation
 - for Q = 0.5 pC: $\Delta \zeta > 66$ as
 - for Q = 10 pC: $\Delta \zeta > 1.3 \, \mathrm{fs}$

phase space after interaction

Limitations - Beam Loading

- beam drives own wake
- modifies streaking field

- resolution degradation
 - for Q = 0.5 pC: $\Delta \zeta > 66$ as
 - for Q = 10 pC: $\Delta \zeta > 1.3 \, \mathrm{fs}$

if beam loading dominates:

- increase laser spotsize
- increase laser intensity

Limitations - Energy Spread

- $\blacktriangleright \ slope \ of \ E_z$
- like in TDS: induced energy spread
 - high temporal resolution ⇔ low energy spread
 resolution
 - here: accumulated 1.4 % energy spread

Limitations - Arrival Time Jitter

- timing jitter:
 - shifts beam in phase of wake
 - remain at 10 % of plasma wavelength
 - 10 fs rms
- synchronization: SASE FEL pulse to IR laser @ FLASH
 - 28 fs rms
 - Imited by bunch duration
 - S. Schulz et al. Nat. Commun. 6:5938 (2015)
 - also: seeded FEL @ FERMI
 - ▶ 6 fs rms
 - M. B. Danailov et al., Opt. Express 22, 12869 (2014)

- ASTRA simulations
- 10 fs rms jitter
- ▶ 50 shots at each delay
- ▶ rel. calibration error: 6 %

comes for free in external injection experiments

Bad

need high power laser system

- comes for free in external injection experiments
- intrinsically synchronized in LPA

- need high power laser system
- synchronization to laser in conventional machines

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact
- tunable frequency

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact
- tunable frequency
- Iow charge

Bad

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

Imited to low charge

- comes for free in external injection experiments
- intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact
- tunable frequency
- Iow charge

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- Imited to low charge
- small beam size required

- comes for free in external injection experiments
- Intrinsically synchronized in LPA
- calibration possible
- direct access to phase space
- compact
- tunable frequency
- Iow charge

ugly: no demonstration yet

- need high power laser system
- synchronization to laser in conventional machines
- "active" structure

- Imited to low charge
- small beam size required

Conclusion

- use plasma wakefield for bunch streaking
- strong fields and short wavelength
- temporal resolution below 1 fs
- high power laser system & synchronization needed
- well suited for laser plasma acceleration

Acknowledgement

funding

partners

LBNL

J.-L. Vay

WARP code

DES

DESY FS-LA

Limitations: Pointing Jitter

- jitter in angle and offset:
 - shifts beam w.r.t. laser
 - streaking voltage drops
- Iaser stability at LUX
 - before compressor: 2 µrad rms pointing
 - after 40 m beam transport & focused: 40 µrad pointing, 6 µm offset
 - ASTRA simulations:
 - jitter: 10 fs rms arrival time 500 µrad pointing 75 µm offset
 - ▶ 50 shots at each delay
 - ▶ rel. calibration error: 3 %

Laser-Driven Plasma Acceleration

see also <u>lux.cfel.de</u>

More longitudinal phase space diagnostics

TDS cavities

- down to 1 fs
- C. Behrens et al., Nat. Commun. 5, 3762 (2014)
- electro-optical monitors
 - around 50 fs
- R. Pompili et al., NIM A 740, 216 (2014)
- G. Berden et al., PRL 99, 164801 (2007)

passive streaker

- depending on charge, fs range
- S. Bettoni et al., PRAB 19, 021304 (2016)

- coherent transition radiation
 - depending on charge, no hard resolution limit
 - no unique reconstruction
- Faraday rotation
- few fs
- need strong magnetic field (high current density)
- A. Buck et al., Nat. Phys. 7, 543 (2011)