

Beam Diagnostics Challenges for Beam Dynamics Studies

International Beam Instrumentation Conference IBIC

11 - 15 September 2016 Barcelona

Rhodri Jones

CERN Beam Instrumentation Group

with input from A. Aleksandrov, V. Dimov, T. Levens, L. Nadolski, R. Tomas Garcia, M. Wendt.

Understanding our Machines

- - Why do we need beam dynamics studies in accelerators?
 - For initial tuning of the machine
 - The closer we are to design parameters the better they (normally) perform
 - For modifying initial design parameters to increase performance To understand the issues and challenges that arise during operation
 - Routine measurements during standard operation - Orbit, tune, coupling, chromaticity
 - Specific measurements during machine set-up

 - Measurement & correction of the Machine Optics • β function, dispersion, non-linear contributions
 - Beta Matching in LINACs or Transport Lines
 - Advanced Measurements
 - Understanding impedance and space charge effects
 - Countering instabilities

Identifying sources driving the diffusion of particles to high amplitudes

The Machine β-Function

The Machine β-Function

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

The Machine β-Function

The Machine **B**-Function

The Machine **β**-Function

CER

The Machine **β**-Function

Brief History of Accelerator Optics Measurement

Brief History of Accelerator Optics Measurement

SLAC 1999

Singular Value Decomposition (SVD) used to remove bad BPMs & reduce measurement noise

PEP II 2006 From phase to virtual model to β

LHC 2015

3 BPM to N BPM extension but good knowledge of lattice uncertainties fundamental

- LHC Examples
 - Tune or aperture kicker
 - Single strong kick
 - Leads to emittance blow-up in hadron machines
 - Quantity of useful data depends on de-coherence time
 - Itself dependent on machine optics
 - "AC Dipole" excitation
 - Developed at RHIC for crossing polarisation resonances
 - Forced oscillation near the tune, but well outside tune spread
 - Leads to steady, high amplitude oscillation without emittance blow-up
 - Long, steady excitation amplitude excellent for optics measurements

Excitation for Optics Measurement

SOLEIL 2008 Orbit Response Matrix

Optics measurements at Light sources

- Dominated by closed orbit techniques (Orbit Response Matrix e.g. LOCO)
 - SOLEIL & DIAMOND achieved 0.3 0.4% β-beating
 - Discussion ongoing on whether this measurement is slightly underestimated
- Recently improved BPM electronics
 - Now allows turn-by-turn techniques to start competing with orbit response
 - Potential to be faster than orbit response techniques
- Comparison campaign on-going at various labs
 - Turn by turn techniques do not yet have sensitivity to measure β -beating at sub 1% level

Brief History of Accelerator Optics Measurement

Future Beam Dynamics Challenges

• From the simple to the complex

- Looking to reduce the horizontal emittance by orders of magnitude

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

Use of non-linear lattice design for next generation synchrotron light sources Improved simulation tools need to go hand in hand with excellent BPM systems • Turn by turn, bunch by bunch, over many turns & able to handle small & large beam charge

BPMs – a Problem for Low Emittance Rings

- **BPM Wake-Potential & Impedance**
 - A serious issue for synchrotron light sources
 - Machine becomes more sensitive to collective effects as lower beam emittances are achieved
 - Short range, high frequency wakes can result in beam induced heating
 - BPMs account for significant fraction of total impedance budget
- Optimisation of pickup design (examples from SIRIUS, Brazil) Reduce impedance & trapped modes

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

Allows maintaining many BPMs for efficient feedback & beam dynamics measurements

Main Beam Instrumentation Challenges for Improving Future **Optics Measurement & Correction in Synchrotrons**

- Limiting excitation strength

 - Important for hadron machines where emittance needs to be conserved Important for light sources to avoid non-linearities due to strong sextupoles
- Better BPM resolution linked to excitation level required
 - Would allow smaller excitation to achieve the same accuracy
 - Resolution NOT currently limiting accuracy of β -beating through phase advance
- **Better BPM calibration**
 - range & overall scale calibration from BPM to BPM
 - Limiting the use of amplitude for β -beating measurements Light sources currently at the 1-2% level with LHC at the 3-4% level To surpass accuracy of phase measurement requires sub % level linearity over excitation
- Longer acquisition times

 - Improves resolution when used in conjunction with AC dipole type excitation Allows time dependent effects to be studied
- Better BPM design for lowering coupling impedance Ensure the measurement device is not perturbing the measurement! _____

Future Challenges for Optics Measurement

Combining better optics correction techniques with better BPM performance β -beating in HL-LHC

Rhodri Jones (CERN Beam Instrumentation Group)

3 monitor method

Optics functions & initial emittance reconstructed assuming known, linear transport matrix

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

More advanced reconstruction

- Linearly map measured profiles onto initial phase space
- Use tomography to reconstruct particle density distribution

But things get more complicated when you add space charge

Rhodri Jones (CERN Beam Instrumentation Group)

IBIC16 Barcelona

More advanced reconstruction

- Linearly map measured profiles onto initial phase space
- Use tomography to reconstruct particle density distribution

But things get more complicated when you add space charge

Rhodri Jones (CERN Beam Instrumentation Group)

IBIC16 Barcelona

Optics Measurement in LINACs

From 2D to 6D Phase Space Measurements

- Required to fully characterise the beam & compare to simulation codes
- Currently being investigated at the SNS Integrated Test Stand Facility

- Challenges lie in reducing time required for a scan & detecting the low intensity to be measured

BI Challenges for BD Studies in LINACs

Non-invasive measurements

- A must for measurement of high intensity beams Important for understanding space charge effects Laser based systems developed for H⁻ LINACs
- - e.g. SNS (Oak Ridge) & LINAC4 (CERN)
- Viable systems for proton LINACs still need development
 - Ionisation profile monitors suffer from space charge issues for high intensity beams Luminescence monitors limited by low light yield for operational vacuum pressures

Rhodri Jones (CERN Beam Instrumentation Group)

IBIC16 Barcelona

BI Challenges for BD Studies in LINACs

Dispersion Free Steering

- Beam-based alignment method
 - Optimisation of choice for next generation linear colliders ullet
- Aims to minimize emittance growth due to BPM & quadrupole misalignment
 - Chromatic dilution scales with square root of number of BPMs ullet
 - For linear colliders, sheer number of BPMs can increase emittance significantly even at 10µm alignment level ullet
- Measure beam position variation with energy
 - Extract quadrupole & BPM misalignment & steer accordingly
- Requires high resolution BPMs with good temporal resolution for single shot measurements e.g. CLIC : 4000+ BPMs with 50nm position resolution & 10ns temporal resolution ullet

 - Single shot at each location when measuring position v energy modulation along train

— Then needs single shot measurement of very small emittances to quantify success!

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

BI Challenges for BD Studies in LINACs

Measuring extremely small beam sizes A must for next generation linear colliders - example of OTR@ATF2 • Recent direct imaging results of 500nm beam size during quadrupole scan

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

Beam Dynamics Studies using Tune Spectra

Beam Dynamics Studies using Tune Spectra

- Tune measurements useful for variety of applications
 - Tune shift with quadrupole strength the local beta function
 - Tune shift with RF modulation the chromaticity
 - Tune shift with current the effective transverse impedance
 - Tune shift with amplitude the strength of nonlinear fields
- Understanding tune spectra also important for
 - Optimisation of beam lifetime
 - Limiting emittance growth
 - Reducing beam losses

Rhodri Jones (CERN Beam Instrumentation Group)

IBIC16 Barcelona

Understanding instabilities, space charge, beam-beam interactions,.....

What do we (usually) see in a tune spectrum?

- **Revolution lines**
 - Normally not displayed or removed by electronic filtering From coherent transverse betatron motion of the beam Displayed in units of tune (from 0 to 0.5 [0.5-1] of revolution frequency)
- ulletMain tune peak (& coupled tune if coupling present)

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

What do we (usually) see in a tune spectrum?

- **Revolution lines**
 - Normally not displayed or removed by electronic filtering
- Main tune peak (& coupled tune if coupling present)
 - From coherent transverse betatron motion of the beam
 - Displayed in units of tune (from 0 to 0.5 [0.5-1] of revolution frequency)
- Synchrotron sidebands (from AM modulation)
 - In presence of synchrotron motion (bunches beams)
 - Interplay of incoherent (single particle) & coherent motion
 - Amplitude depends on Chromaticity
 - Frequency depends on synchrotron frequency but also on beam dynamics effects

Rhodri Jones (CERN Beam Instrumentation Group)

Bunch motion for non-zero chromaticity

Dealing with High Intensity Effects @ GSI Modification of tune spectra by space charge & impedance Relative heights & mode structure given by chromaticity Can be calculated with simplified analytical models

IBIC16 Barcelona

Combining tune spectra with intra-bunch diagnostics Head-Tail modes clearly visible - Gives important input to validate beam dynamic simulations in the presence of impedance and space charge

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

Understanding Instabilities

Often a limiting factor for intensity increase

- Understanding their origin important to find a cure
 - Transverse feedback, chromaticity, octupole current, ...
- Challenges lie in
 - Detecting onset of instability to allow triggering instrumentation lacksquare
 - ightarrow

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

- Caused by impedance, space charge, electron cloud, beam-beam, ...

Instrumentation for intra-bunch diagnostics on sub-nanosecond bunches Direct sampling limited by dynamic range, acquisition length & data volume Requires detectors with wide bandwidth response from MHz to > 10 GHz

Understanding Instabilities

Ongoing R&D

- Electro-optical detection techniques to allow higher detector bandwidth

Understanding Beam Halo Formation

Understanding Beam Halo Formation

- Halo control essential to limit beam loss

 - damage of accelerator components
 - Due to instantaneous losses or long term irradiation ullet
- The Beam diagnostic challenges
 - The high dynamic range required Developing non-invasive techniques

Simulation of halo formation from long-range beam-beam interactions

- Best done by tuning the machine to avoid populating the tails in the first place - For high energy or high power machines too much beam in the halo can lead to

Understanding the Beam Halo

Non-invasive techniques being investigated Coronagraph (prototype for HL-LHC now installed in LHC)

- Uses synchrotron radiation
- Need to limit diffraction from core

– Intensity of fringes in range of 10⁻² to 10⁻³ of peak intensity would mask any halo at 10⁻⁵ level

Non-invasive techniques being investigated Coronagraph (prototype for HL-LHC now installed in LHC)

- Uses synchrotron radiation
- Need to limit diffraction from core

IBIC16 Barcelona

Rhodri Jones (CERN Beam Instrumentation Group)

- Intensity of fringes in range of 10⁻² to 10⁻³ of peak intensity would mask any halo at 10⁻⁵ level Reduce effect of diffraction fringes using Coronagraph developed for astronomy At KEK Photon Factory achieved ratio for background to peak intensity of 6x10⁻⁷

Summary

- Beam Dynamics Studies extremely important
 - To push performance of existing machines
 - To understand beam stability issues that arise
 - To study new solutions for future accelerators
- Can only be done through partnership with Beam Instrumentalists
 - Improvements to beam instrumentation has resulted in a better understanding, pushing the accelerator physicist to develop enhanced correction algorithms and simulation tools
- Main Beam Instrumentation Challenges for the Future
 - High resolution, extremely linear, bunch-by-bunch BPM systems
 - Non-invasive beam size measurements
 - High bandwidth detectors for intra-bunch transverse diagnostics

 - High bandwidth readout systems with on-the-fly data processing and reduction High dynamic range beam halo diagnostics
- Much of this talk based on an excellent workshop held last year
 - "Beam Dynamics meets Diagnostics" EuCARD2 Workshop 2015, Florence, Italy. https://indico.gsi.de/conferenceDisplay.py?confld=3509