

SiPMs for Beam Instrumentation Ideas From High Energy Physics

D. Ciaglia, G. Fernandez, <u>D. Gascon</u>, S. Gomez, R. Graciani , J. Mauricio, N. Rakotonavalona, D. Sanchez, A. Sanuy

SiUB & ICCUB

Universitat de Barcelona

IBIC16 – Barcelona – September 15th 2016

I. Motivation

- II. SiPMs: state of the art
- III. Signal conditioning
- IV. Use cases in HEP
- V. Possible applications for BI

I. Motivation: photodetectors in HEP

Where do we need photodetectors?

scintillators readout

Calorimetry (elm & hadr)

Tracking (with scintillating fibers)

Time-Of-Flight i.e. PID pcl pcl

detection of Cherenkov light

PID (Particle ID)

Cherenkov Threshold detectors

partially also in calorimetry

12 September 2016

I. Motivation: photodetectors in HEP

for Cherenkov emission (namely RICH):

- blue / UV light sensitivity (large spectral response)
- single photons sensitivity
- optimize spatial resolution of single photons
- maximize number of detected photons
- large detector areas

for scintillation: (most requirements here are specifically application-driven)
- visible light (mostly blue / green)

I. Motivation: photodetectors in HEP

Institute of Cosmos Sciences

for Cherenkov emission (namely RICH): photodetectors in HEP blue / UV light sensitivity (large spectral response) - single photons sensitivity optimize spatial resolution of single photo maximize number of detected phere Danicle ID - large detector areas uirement for scintilla cifically application-driven) ains - visible l - nr. of photor for large calorimeters => ~ 100s - 10000s photoms depending on scintillator Calorimetry depending on energy deposition => large dynamic range

- I. Motivation
- II. SiPMs: state of the art
- III. Signal conditioning
- IV. Use cases in HEP
- V. Possible applications for BI

II. SiPMs: P-N junctions

Reversed bias pn junction - Different regimes

Linear mode

Bias voltage

Break

EXCELENCIA MARÍA DE MAEZTU Institute of Cosmos Sciences n р Eint enlarge depletion region

Vbias :

- secondary ionization from electrons and holes
- "broken" junction, avalanche
- Geiger regime, not linear anymore

SILICON PHOTOMULTIPLIER (SiPM) : array of micro-cells operated in G-APD IBIC16

12 September 2016

- voltage

- avalanche

- linear regime

J. Haba, NIM A 595(2008) 154-160

Gain (log)

PIN Diode

- no bias

- no gain

7

II. SiPMs: structure

<u>SiPM : array of micro-cells</u> *APD-like operated in G-mode* connected to a common bias through independent quenching resistors, all integrated within a sensor chip. The output is the analogue sum of all cells

individual cell (i.e. one diode. APD-like)

- Vbias > Vbreakdown
- Gain ~ 10⁶ 10⁷
- Geiger regime (fully saturated)
- No analogue info at the single cell level !

MARÍA DE MAEZTU

II. SiPMs: photon counting

The output signal is 'quantized' and proportional to the Nr of fired cells

Excellent single photon counting capability

12 September 2016

D. Renker, 2009 JINST 4 P04004

IBIC16

Intrinsic non-linearity in the response to high Nr incident photons

Linear but only as long as Nr_detected_photons < Nr_cells

after that : saturation

the 'dark side' of SiPM

dark counts

impurities and/or thermal generation of free charges> permanent rate of avalanches <u>not induced by photons</u>

cross-talk

correlated noise : avalanches induced by the 'primary' avalanche in a neighbor pixel at the same time of the primary avalanche

• afterpulses

correlated noise : avalanches induced by the 'primary' avalanche in the same pixel at a later time

Noise depends strongly on Vov and Temperature!

II. SiPMs: dark count

Counts registered by SiPM in absence of light Due to **thermal generation** of charge carriers and/or tunnelling

typical values DARK COUNT RATES 100 kHz - MHz / mm² (@ 0.5 pe thr)

- function of the triggering thr

IBIC16

12 September 2016

II. SiPMs: correlated noise

Optical Cross Talk

During the avalanche a large nr of photons are produced { **O(1photon/10⁵ charge carriers)** } => Reach neighbours pixels and start a second avalanche

correlated noise

contribution **added** to the primary signal stochastic process => contributes to ENF

- larger Vov => larger gain => higher P_XT
- smaller pixel size => higher P_XT
- XT ~ 30 40 % (w/o trenches)
- significant impact of trenches = optical separation

Afterpulses

Charge carriers temporarily trapped in the lattice defects and released near the avalanche region (same cell) with some time delay

correlated noise

contribution delayed, occurring after the primary signal

II. SiPMs: state of the art

- Institute of Cosmos Sciences
- High progress in SiPM technology: high PDE & low crosstalk
- DCR has been also reduced down to 100 KHz/mm²
- Still a trade-off between PDE and crosstalk exists
- Also for other parameters: linearity, rate, etc
- SiPM configuration (pixel size, number, area, overvoltage, model) has to been chosen accurately for each specific application

J. Biteau et alt. "Performance of Silicon Photomultipliers for the Dual-Mirror Mediun Sized Telescopes of the Cherenkov Telescope Array", ICRC2015

12 September 2016

IBIC16

II. SiPMs: radiation damage

Like the other Si devices, SiPM are sensitive to NIEL (Non Ionizing Energy Loss) damages by hadrons => damage of the Si lattice => increase in DCR and I_leakage

significant increase on DCR with irradiation

mitigated with COOLING !

12 September 2016

IBIC16

EXCELENCIA MARÍA DE MAEZTU

Institute of Cosmos Sciences

II. SiPMs: solid state photodetectors

- detection of low light level (single photons detection)
- excellent timing performance

Applications in HEP

- PIN / APD : Calorimetry
- SiPM : ~ Everywhere!! (compatibly with the maturity of the technology) Calorimetry / Timing / Cherenkov single photon detection / Tracker...

note : not all applications are suitable for SiPM!!!

- I. Motivation
- II. SiPMs: state of the art
- **III. Signal conditioning**
- IV. Use cases in HEP
- V. Possible applications for BI

- Front end electronics for SiPM is needed to:
 - Adapt impedances
 - SiPM capacitances range from 30 pF to more than 1 nF
 - Preamplify to optimize the SNR
 - Even if "nominal" gain is in the order of 10⁶ only a fraction of the charge is used for fast read-out systems
 - Shape the input signal
 - Large SiPM time constant may cause saturation or distortion because of pile up
 - Combine (sum) the signal of several SiPMs
 - Sometimes equalize over-voltage in SiPM arrays

• MUSIC ASIC incorporates many of those functions:

• It will be used to illustrate them

12 September 2016

Pole zero shaping

- Pole-Zero cancellation of the SiPM recovery time constant
- Parameters of the PZ cancellation are tunable to deal with different sensors
 - Up to 100 ns time constant
- After PZ cancellation: output pulse FWHM < 5 ns

EXCELENCIA MARÍA DE MAEZTU

Institute of Cosmos Sciences

- Output for a LCT4 MPPC (3x3 mm², 75 um cell)
- No pole-zero cancellation
- Large SiPM tail: pulse width > 100 ns

Keysight Infiniium : Wednesday, June 22, 2016 5:55:08 PM

- Output for a LCT4 MPPC (3x3 mm², 75 um cell)
- Pole-zero cancellation
- Excellent resolution with FWHM of about 5 ns
- Possible to reach 2-3 ns FWHM for other SiPM models

- Charge spectrum for a LCT4 MPPC (3x3 mm², 75 um cell)
- Pole-zero cancellation
- Excellent resolution with FWHM of 5 ns

- Binary output for a LCT4 HPKK MPPC (3x3 mm², 75 um cell)
- Pole-zero cancellation

- I. Motivation
- II. SiPMs: state of the art
- III. Signal conditioning

IV. Use cases in HEP

V. Possible applications for BI

IV. Use in HEP: Scintillating Fiber Tracker

Institute of Cosmos SIUB

12 September 2016

IV. Use in HEP: SciFi Tracker Fibers

- Scintillation yield: $dY_{\gamma}/dE = 8000 \text{ ph} / \text{MeV}$
- Trapping inside fibre (1 hemisphere): 5.4%
- Attenuation losses over 1 m: 22%
- Efficiency of photodetector (typ. PMT): 25%

- → Need more traversed fibre thickness
 → increase thickness in particle direction (fiber stack)
- → Need higher photodetector efficiency → SiPM with PDE \sim 50 %
- \rightarrow Need to recover light in the second hemisphere \rightarrow mirror at the fiber end

MARÍA DE MAEZTU

Institute of Cosmos Sciences

IV. Use in HEP: SciFi Tracker Fibers

The majority of SciFi R&D and prototyping has been performed with SCSF-78MJ, Ø 0.25 mm, from Kuraray (JP).

Attenuation in a 3.5 m long SCSF-78 fibre (Ø 0.25 mm) in air, averaged over emission spectrum

IBIC16

IV. Use in HEP: SciFi Tracker Modules

30

EXCELENCIA MARÍA DE MAEZTU

Institute of Cosmos Sciences

Main radiation damage is transparency loss → decreasing attenuation length

Beam Type	Facility	Doses (kGy)	Dose rate (kGy/h)
$24 \mathrm{GeV/c} \mathrm{protons}$	CERN PS	3, 22	1.7, 0.4
$24 \mathrm{MeV}$ protons	KIT	9 - 60	$1.8 \cdot 10^{3}$
$F^{18}(e^+ \text{ to } 511 \text{ keV } \gamma)$	CERN/AAA	0.5	$\sim 2 \cdot 10^{-2}$
35 kV x-ray	Uni. HD	0.1, 0.2	$3.5 \cdot 10^{-3}$

^r Summary of SciFi irradiation experiments

The irradiation tests suggest

- A early onset of the damage $(\Lambda/\Lambda_0 \sim \log D)$
- No strong effect of dose rate visible
- Recovery effects not clearly established

Combination of dose distribution and damagevs-dose relation let us expect, at the end of the lifetime of the detector, a signal reduction by about 40%.

IV. Use in HEP: SciFi Tracker SiPMs

custom developments by Hamamatsu and KETEK are meeting the requirements

MARÍA DE MAEZTU

Institute of Cosmos Sciences

IV. Use in HEP: others

CALICE Analogue HCAL

- for future linear collider detectors
- high granularity calorimeter for particle flow applications
- scintillator tiles individually readout by SiPM through WLS fibers
- first large scale SiPM application in HEP

T2K experiment

- long-baseline neutrino experiment
- off-axis near detector
- electromagnetic calorimeter for the ND280

IV. Use in HEP: others

CMS HCAL HO (Outer Hadron Calorimeter)

- part of the HCAL as "tail catcher"
- outside magnet (still in return yoke field)
- actually the first large-scale (~ 1600 SiPM) operating in hadron collider
- replaced the HPD (during LS1)

• scintillator tiles with WLS fibers

CMS HCAL UPGRADE

• SiPM will replace the HPD

- I. Motivation
- II. SiPMs: state of the art
- III. Signal conditioning
- IV. Use cases in HEP
- V. Possible applications for accelerator beam instrumenation

V. Possible applications for accelerator BI

- SiPMs could be used in nearly any possible PMT application
 - Scintillator detectors:
 - Large dynamic range: 14-15 bits
 - Cherenkov detectors:
 - High PDE: near 50 %
 - Single photon detectors and photon counting
 - Short pulses (< 5ns) after correct shaping.
 - High time resolution (single photon time resolution around 100 ps)

• Possible exceptions:

- Radiation damage:
 - SiPMs are very sensitive to NIEL
 - Can be alleviated: cooling (DCR), shielding, use optical fibres
- Large area photo-detection:
 - Large area PMTs are still quite cost competitive
 - Depends on the evolution of the market

V. Possible applications for accelerator BI

- Beam loss monitors based on scintillators and Cherenkov effect
 - For Optical Fibre BLM based on Cherenkov effect, high PDE SiPMs can be very useful as Cherenkov light yield is rather low
 - An optical BLM based on scintillating fibres can be useful in low radiation environments
 - See 1962 TUPG20 and 2060 WEPG20
- Transverse Profile Monitors based on scintillating fibers and others
 - See 1691 MOPG76, 2084 WEPG64 and 2119 WEPG70
- Can the experience from SciFi tracker be useful ?

E. Rojatti et al. "SCINTILLATING FIBERS USED AS PROFILE MONITORS FOR THE CNAO HEBT LINES" Proceedings of IPAC2015, Richmond, VA, USA 37

12 September 2016

IBIC16

V. Possible applications for BI

- See 2104 MOPG59
- By correct choice of SiPM and front end electronics excellent performances can be obtained
- Cooling might be required for low DCR

EXCELENCIA MARÍA DE MAEZTU

Martinenghi et al. "Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems", Rev. Sci. Instrum. 87, 073101 (2016)

TABLE I. Performances of the most commonly used PMTs for diffuse optics application and comparison with the SiPM module.

Manufacturer	Name	Area (mm ²)	QE 600 nm (%)	QE 800 nm (%)	SPTR (ps)	DCR (kcps)	Cooled
Hamamatsu Ltd.	R7400U-20	50.2	16.5	7.7	n.d.	<0.4	Ν
Hamamatsu Ltd.	R5900-20-M4	4 × 81	15.0	7.0	320	n.d.	Ν
Becker & Hickl	PMC-100	50.2	10.3	4.6	180	0.2-0.5	Y
Becker & Hickl	HPM-100-50	7.1	15.0	13.0	130	0.5-3	Ν
Picoquant	<u>PMA-19</u> 2	50.2	18.0	8.0	150	<3	Y
SiPM m	nodule	1	29.9	10.1	100	~100	Y

12 September 2016

Acknowledgements

- Many thanks to Chiara Casella (MIB) and Christian Joram (CERN) for the material on SiPMs and HEP applications
- And to the members of our team: A. Casajus, D. Ciaglia, G. Fernandez, D. Gascon, S. Gomez, R. Graciani, J. Mauricio, E. Picatoste, N. Rakotonavalona, D. Sanchez, A. Sanuy

Thanks a lot for your attention !!! Questions ?

dgascon@fqa.ub.edu