4-D and 6-D Emittance Determination for Hadron LINACs

A. Aleksandrov

Oak Ridge National Laboratory,

USA

Outline

- Introduction
 - Why, what, definitions, etc.
- Example of 4D RMS emittance diagnostics at GSI
- Set up for 6D phase space scan at SNS

Why do we need to know 4D or 6D emittance?

 Generic answer is to provide input data for computer simulation of beam dynamics

What is specific about <u>RF linacs</u>?

- Linac is single pass system \rightarrow initial conditions in large degree define particles dynamics
- Beam is bunched and bunch is short \rightarrow 6D phase space

What is specific about <u>hadron</u> RF linacs?

- Non-relativistic energy (γ=1-2)
 - Large un-normalized emittance (mm range beam size)
 - Significant space charge
 - Weak synchrotron radiation
 - Weak EM field contraction
- Particles interaction with materials
 - Large power deposition volume density
 - Material sputtering
 - Neutron production and activation

There is significant difference even within hadrons family:

- Protons
- H-
- Light ions
- Heavy ions

- End-to-end simulation starting from ion source plasma surface
 - No measurements involved. No comments

• End-to-end simulation starting from ion source plasma surface

- No measurements involved. No comments
- Measure 4D distribution at ion source exit
 - Beam dynamics in RFQ is the most challenging part of linac simulation: strong space charge, many cells, no diagnostics

• End-to-end simulation starting from ion source plasma surface

- No measurements involved. No comments
- Measure 4D distribution at ion source exit
 - Beam dynamics in RFQ is the most challenging part of linac simulation: strong space charge, many cells, no diagnostics
- Measure 6D distribution at RFQ exit
 - The most challenging from beam instrumentation point of view

- End-to-end simulation starting from ion source plasma surface
 - No measurements involved. No comments
- Measure 4D distribution at ion source exit
 - Beam dynamics in RFQ is the most challenging part of linac simulation: strong space charge, many cells, no diagnostics
- Measure 6D distribution at RFQ exit
 - The most challenging from beam instrumentation point of view

Bunch representation

Bunch representation

A. Aleksandrov

σ -matrix vs. distribution function

Measured **O-matrix** can be used directly as input for <u>RMS envelope tracking</u> <u>codes</u>:

- Simulate dynamics of beam core only (RMS bunch size)
- Linear motion only
- Cannot predict beam loss

Measured distribution function can be used to generate particles as input for <u>Particle-In-Cell</u> (PIC) tracking codes:

- Simulate dynamics of beam core, tails and halo (track individual particles)
- Non-linear motion in realistic é/m fields
- Should be capable of predicting beam loss

Known distribution function is sufficient for calculating σ matrix

Known **σ** matrix <u>is not sufficient</u> for calculating distribution function

12

O-matrix vs. distribution function

Measured σ -matrix can be used directly as input for RMS envelope tracking codes:

- Simulate dynamics of beam core only (RMS bunch size)
- Linear motion only
- Cannot predict beam loss

Measured distribution function can be used to generate particles as input for Particle-In-Cell (PIC) tracking codes:

- Simulate dynamics of beam core, tails and halo (track individual particles)
- Non-linear motion in realistic e/m fields
- Should be capable of predicting beam loss

True high dimensional distribution functions

 $f_6(x, x', y, y', z, z')$ - true 6D distribution function as defined earlier

$$f_2(x, x'); f_2(y, y'); f_2(z, z')$$

easily measurable 2D projections of f_6 on x, y, z planes

 $f_{3*2}(x, x', y, y', z, z') = f_2(x, x') \cdot f_2(y, y') \cdot f_2(z, z')$ **^**Sometimes is called 6D erroneously but

$$f_{3*2}(x, x', y, y', z, z') \neq f_6(x, x', y, y', z, z')$$

except for special case of no any correlations between degrees of freedom

zero correlation terms in 6D σ -matrix <u>do not</u> guarantee absence of higher order correlations in f_6

How to measure emittance?

Reconstruction from lower dimensional projections

Rotate object or detector

σ-matrix

exact solution in absence of space charge if number of projections: >3 for 2D

>10 for 4D >21 for 6D

well established in 2D ('quad scan' technique) well established in 4D (example in next section)

??? for 6D

distribution function

phase space tomography provides approximate solution

well established in 2D

algorithm proposed for 4D

??? for 6D

direct phase space sampling

distribution function

well established in 2D (slit-slit; slit-grid etc. scan)

well established in 4D (pepper pot)

to be demonstrated in 6D (last part of this talk)

Measuring RMS in 4D example: ROSE at GSI

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 072802 (2016)

'Rotating system for four-dimensional transverse rms-emittance measurements'

C. Xiao, M. Maier, X. N. Du, P. Gerhard, L. Groening, S. Mickat, and H. Vormann

Measuring 4D distribution function. Pepper pot. BNL C-AD Technote C-A/AP/#244 A. Pikin, A. Kponou, J. Ritter, V. Zajic

4D emittance measurement techniques are well established

Can we measure 6D emittance?

Preferably, the distribution function ?

2D distribution measurement (emittance) using slit-slit technique

4D distribution measurement using four slits arrangement

 $x = s_{x1}$ $y = s_{y1}$ $x' = \frac{s_{x2} - s_{x1}}{L}$ $y' = \frac{s_{y2} - s_{y1}}{L}$

A. Aleksandrov

6D distribution measurement arrangement

"Curse of dimensionality" problem:

What looks simple in low-dimension problem can become ridiculously difficult in higher dimensions

- High-dimensional spaces have very large volume: $V \sim a^D$
 - Large scan time
 - Low charge density
 - Large data sets

Scan time estimate

For m = 10, D = 6 $N_{bins} = 10^6$

Total scan time at $1 \frac{step}{sec}$: $T_{total} = 10^6 sec = 280 hours$

Total scan time at 10 $\frac{step}{sec}$: $T_{total} = 10^5 sec = 28 hours$

$$\frac{V_{\circ}}{V_{\Box}} = \frac{\pi^{D/2}}{\Gamma(D/2 + 1)2^{D}} = \begin{cases} .79 ; D = 2 \\ .52 ; D = 3 \\ .081 ; D = 6 \end{cases}$$

Tens of hours total scan time

Signal strength estimate

$$i = I_0 \cdot \frac{exp(-\frac{x^2}{2\sigma^2_x} - \frac{x'^2}{2\sigma^2_{x'}} - \frac{y^2}{2\sigma^2_{y'}} - \frac{y'^2}{2\sigma^2_{y'}} - \frac{w^2}{2\sigma^2_{w'}} - \frac{\varphi^2}{2\sigma^2_{y'}})}{8\pi^3} \frac{\Delta_x}{\sigma_x} \frac{\Delta_x}{\sigma_{x'}} \frac{\Delta_y}{\sigma_y} \frac{\Delta_y}{\sigma_{y'}} \frac{\Delta_w}{\sigma_w} \frac{\Delta_\varphi}{\sigma_\varphi} \approx \frac{exp(\dots)}{8\pi^3} (\Delta/\sigma)^6$$

For $\Delta/\sigma \approx .2$ current after all 6 slits $i \approx I_0 \cdot 2.6 \cdot 10^{-7} \cdot \exp(...)$

Number of particles in $I_0 \approx 32 \ mA$, $\tau \approx 50 \ \mu s$ beam pulse is $N_0 \approx 10^{13}$

Number of particles after 6 slits: $N_{FC} \approx 2.6 \cdot 10^6$ at the distribution center r = 0

$$N_{FC} \approx 1.6 \cdot 10^6$$
 at $r = 2 \sigma$
 $N_{FC} \approx 2.9 \cdot 10^4$ at $r = 3 \sigma$
 $N_{FC} \approx 9.7$ at $r = 5 \sigma$

Many hours of beam time allocated for single measurement is big challenge for any large scale accelerator facility

Only feasible at a dedicated facility

SNS Beam Test Facility (BTF)

MEBT RFQ Ion Source		
	Particles	H
	Energy	2.5 MeV
	Current	< 50 mA
	Pulse width	< 1 ms
	Rep rate	< 60 Hz
	Beam Power	< 7.5 kW

SNS BTF set up for 6D phase space measurement

BTF MEBT

X-Y Slits arrangement

4D scan results First

Oak RidgutRON SCIENCES (865) 241-6794 | EAM TEST FACILITY

CAK RIDGE

Date:	September 6, 2016	
Ref:	NSCD-RAD-16-0001-R00	
To:	A. V. Aleksandrov M. E. Middendorf G. D. Johns	
c:	 G. W. Dodson S. M. Cousineau D. E. Paul M. J. Baumgartner M. S. Champion S. Kim K. S. White L. A. Longcoy K. L. Mahoney 	
From:	K. W. Jones //w	

Subject: Authorization for Integrated Operation of the Beam Test Facility (B Testing, RFQ Commissioning and Initial Physics Measurements with Bending Magnet Disabled

References:

- "Safety Analysis for SNS Beam Test Facility," A. Aleksandrov, G. Dodson, D. Freeman and K. Jones, SNS-102030103-ES0059, July 18, 2016.
- "Contract DE-AC05-000R22725, Request for Exemption from the Provisions of DOE O 420.2C for the Spallation Neutron Source Beam Test Facility," Letter from Paul Langan to Johnny O. Moore, dated July 19, 2016.

Received authorization to run the facility on September 6th 2016

u

n

ḿA)

-8

-10-

0.2

8 mA

0.22

0.24

0.26

Time (ms)

0.28

/ade/epics/iocCommon/Support/ITSF-Diag/opi/

a design of the ball of the second second

0.32

0.3

First beam out of the

new RFQ!

September 8, 2016

Actional Laboratory

Beam Current Monitor ITSF_Diag:BCM04

31

September 9, 2016

September 9, 2016

View screen image with 2 slits inserted (1 horizontal, 1 vertical)

View screen image with 4 slits inserted (2 horizontal, 2 vertical)

Equipment for 4D scan commissioned but we did not have time for full scan

Longitudinal plane is next step

Bunch Shape Monitor principle of operation

Deflecting 2.5MeV proton beam directly with an RF cavity is expensive therefore we use <u>Beam Shape Monitor aka "Feschenko monitor"</u>

Speeding up scan in z-z' plane

Slit mounted on this flange to be replaced with view screen

SEM and Faraday Cup to be replaced with digital camera

6D scan results

not there yet

6D scan results

but will be soon

Near Term Research Goals

- Optimize 6D phase space measuring system for maximum resolution and dynamic range
- Develop algorithm for generating particle distributions for loading to PIC codes
- Search for high-dimensional correlations in the measured distribution
- Develop and verify methods of generating 6D distributions from low-dimensional projections
- Repeat LEDA beam dynamics experiment with newly developed diagnostics

Experimental study of halo formation in high intensity beam

- Experiment highlights:
 - Direct 6D phase space measurement.
 - Study halo formation in FODO structure.
 - Benchmark simulation codes

Thank you for your attention!

